7£®ÒÑÖª¶¨ÒåÔÚRÉϵÄżº¯Êýf£¨x£©Âú×ãf£¨x+4£©=f£¨x£©£¬ÇÒµ±0¡Üx¡Ü2ʱ£¬f£¨x£©=min{-x2+2x£¬2-x}£¬Èô·½³Ìf£¨x£©-mx=0Ç¡ÓÐÁ½¸öʵÊý¸ù£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-$\frac{1}{3}}$£©¡È£¨${\frac{1}{3}$£¬+¡Þ£©B£®£¨-¡Þ£¬-$\frac{1}{3}}$]¡È[${\frac{1}{3}$£¬+¡Þ£©C£®£¨-2£¬-$\frac{1}{3}}$]¡È[${\frac{1}{3}£¬2}$£©D£®[-2£¬-$\frac{1}{3}}$]¡È[${\frac{1}{3}$£¬2]

·ÖÎö Ê×ÏÈÓÉÌâÒâÇó³öf£¨x£©£¬È»ºóÁîg£¨x£©=mx£¬×ª»¯ÎªÍ¼Ïó½»µãµÄÎÊÌâ½â¾ö£®

½â´ð ½â£ºÓÉÌâÒâµÃf£¨x£©=$\left\{\begin{array}{l}{{-x}^{2}+2x£¬0¡Üx¡Ü1}\\{2-x£¬1£¼x¡Ü2}\end{array}\right.$£¬
ÓÖÒòΪf£¨x£©ÊÇżº¯ÊýÇÒÖÜÆÚÊÇ4£¬¿ÉµÃÕû¸öº¯ÊýµÄͼÏó£¬
Áîg£¨x£©=mx£¬±¾Ìâת»¯ÎªÁ½¸ö½»µãµÄÎÊÌ⣬
ÓÉͼÏó¿ÉÖªÓÐ2²¿·Ö×é³É£¬
£¬
½áºÏͼÏó£¬-2£¼m¡Ü-$\frac{1}{3}$»ò$\frac{1}{3}$¡Üm£¼2£¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éµÄÊǺ¯ÊýµÄÐÔÖʵÄ×ÛºÏÓ¦Óã¬ÀûÓÃÊýÐνáºÏ¿ìËٵý⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ò»Ö»ÂìÒÏÔڱ߳¤·Ö±ðΪ2£¬$2\sqrt{3}$£¬4µÄÈý½ÇÐÎÄÚÅÀÐУ¬Ä³Ê±¿Ì´Ë´ËÂìÒϾàÀë¶¥µãÈý½ÇÐεľàÀë¾ù²»³¬¹ý1µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{3}¦Ð}}{12}$B£®$\frac{{\sqrt{3}¦Ð}}{6}$C£®$1-\frac{{\sqrt{3}¦Ð}}{6}$D£®$1-\frac{{\sqrt{3}¦Ð}}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èç¹ûº¯Êýf£¨x£©=sin£¨¦Øx+$\frac{¦Ð}{3}$£©£¨¦Ø£¾0£©µÄ×îСÕýÖÜÆÚÊǦУ¬ÄÇôf£¨¦Ð£©=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®-$\frac{1}{2}$C£®$\frac{\sqrt{3}}{2}$D£®-$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®£¨1£©ÓÐ20¸öÁã¼þ£¬ÆäÖÐ16¸öÒ»µÈÆ·£¬4¸ö¶þµÈÆ·£¬Èô´ÓÕâ20¸öÁã¼þÖÐÈÎÒâÈ¡3¸ö£¬ÄÇôÖÁÉÙÓÐ1¸öÒ»µÈÆ·µÄ²»Í¬È¡·¨ÓжàÉÙÖÖ£¿£¨ÓÃÁ½ÖÖ²»Í¬µÄ·½·¨Çó½â£©
£¨2£©ÓÃ1¡¢2¡¢3¡¢4Õâ4¸öÊý×Ö×é³ÉÎÞÖØ¸´Êý×ÖµÄËÄλÊý£¬ÆäÖÐÇ¡ÓÐ1¸öżÊý×Ö¼ÐÔÚÁ½¸öÆæÊý×ÖÖ®¼äµÄËÄλÊýµÄ¸öÊýÓжàÉÙ¸ö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖª2cosC£¨acosB+bcosA£©=c£®
£¨¢ñ£©ÇóC£»
£¨¢ò£©Èô¡÷ABCµÄÖܳ¤Îª5+$\sqrt{7}$£¬Ãæ»ýΪ$\frac{3\sqrt{3}}{2}$£¬Çóc£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-1¡Ý0\\ x-y¡Ü0\\ x+y-4¡Ü0\end{array}\right.$£¬Ôòlog3$\frac{y}{x}$µÄȡֵ·¶Î§Îª[0£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªn¡ÊN*£¬k¡ÊN*£¬k¡Ün£®ÇóÖ¤£º
£¨1£©£¨k+1£©C${\;}_{n+1}^{k+1}$=£¨n+1£©C${\;}_{n}^{k}$£»
£¨2£©C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+¡­+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{{2}^{n+1}-1}{n+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÇóÖ±Ïßl1£º$\left\{\begin{array}{l}{x=1+3t}\\{y=2-4t}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÖ±Ïßl2£º2x-4y=5µÄ½»µãBµÄ×ø±ê£¬¼°µãBÓëA£¨1£¬2£©µÄ¾àÀ룮£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑ֪˫ÇúÏßµÄÒ»Ìõ½¥½üÏßΪy=2x£¬ÇÒ¾­¹ýÅ×ÎïÏßy2=4xµÄ½¹µã£¬ÔòË«ÇúÏߵıê×¼·½³ÌΪ${x^2}-\frac{y^2}{4}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸