精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=(x+1)a+1(a>0),则“a是奇数”是“x=-1是函数f(x)的一个极值点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分必要条件的定义以及函数的极值问题,是一道基础题.

解答 解:f(x)=(x+1)a+1(a>0),
f′(x)=(a+1)(x+1)a
a是奇数时,f(x)在(-∞,-1)递减,在(-1,+∞)递增,
x=-1是函数f(x)的一个极值点,故是充分条件,
反之,若x=-1是函数f(x)的一个极值点,a不一定是奇数,
比如a=$\frac{1}{3}$,
故选:A.

点评 本题考查了充分必要条件,考查函数极值问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{x^3}{3}-{x^2}$-2ax(a∈R),若f′(1)=-1,求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列函数在(0,+∞)上是减函数的有(2)(4)
(1)y=2x+1;(2)y=$\frac{2}{x}$;(3)y=-x2+2x;(4)y=-x2-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若△ABC的周长为5+$\sqrt{7}$,面积为$\frac{3\sqrt{3}}{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{{\begin{array}{l}{|{x+1}|,x≤0}\\{|{{{log}_3}x}|,x>0}\end{array}}$,若方程f(x)-a=0的四个根分别为x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{1}{{{x_3}({{x_1}+{x_2}})}}$+$x_3^2{x_4}$的取值范围是(  )
A.[-$\frac{7}{6}$,$\frac{1}{2}}$)B.(-$\frac{7}{6}$,$\frac{1}{2}}$)C.[-1,$\frac{7}{3}}$)D.(-1,$\frac{7}{3}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知n∈N*,k∈N*,k≤n.求证:
(1)(k+1)C${\;}_{n+1}^{k+1}$=(n+1)C${\;}_{n}^{k}$;
(2)C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{{2}^{n+1}-1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的边AB在直角坐标平面的x轴上,AB的中点为坐标原点,若$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|}$=$\frac{1}{2}$,$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|}$=$\frac{3}{2}$,又E点在BC边上,且满足3$\overrightarrow{BE}$=2$\overrightarrow{EC}$,以A、B为焦点的双曲线经过C、E两点.
(I)求|$\overrightarrow{AB}$|及此双曲线的方程;
(II)若圆心为T(x0,0)的圆与双曲线右支在第一象限交于不同两点M,N,求T点横坐标x0取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最小值,则下列结论正确的是(  )
A.f($\frac{π}{2}$)<f($\frac{π}{6}$)<f(0)B.f(0)<f($\frac{π}{2}$)<f($\frac{π}{6}$)C.f($\frac{π}{6}$)<f(0)<f($\frac{π}{2}$)D.f($\frac{π}{2}$)<f(0)<f($\frac{π}{6}$)

查看答案和解析>>

同步练习册答案