精英家教网 > 高中数学 > 题目详情
3.已知△ABC的边AB在直角坐标平面的x轴上,AB的中点为坐标原点,若$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|}$=$\frac{1}{2}$,$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|}$=$\frac{3}{2}$,又E点在BC边上,且满足3$\overrightarrow{BE}$=2$\overrightarrow{EC}$,以A、B为焦点的双曲线经过C、E两点.
(I)求|$\overrightarrow{AB}$|及此双曲线的方程;
(II)若圆心为T(x0,0)的圆与双曲线右支在第一象限交于不同两点M,N,求T点横坐标x0取值范围.

分析 (I)由已知向量等式可得$|\overrightarrow{AD}|=\frac{1}{2}$,$|\overrightarrow{BD}|=\frac{3}{2}$,由此求得$|\overrightarrow{AB}|$,得到A,B的坐标,设出双曲线方程及C,E的坐标,结合3$\overrightarrow{BE}$=2$\overrightarrow{EC}$,把E的坐标用C的坐标表示,代入双曲线方程求得a,b的值,则双曲线方程可求;
(II)设出M坐标,由已知条件得|TM|=|TN|,结合M,N在双曲线上可得7(x1+x2)=2x0,结合M,N的横坐标的范围求得T点横坐标x0取值范围.

解答 解:(I)由题知:$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|}=\frac{1}{2}$  ①,而$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}|•|\overrightarrow{AC}|cosA$  ②,
由①②,$|\overrightarrow{AC}|cosA=\frac{1}{2}$,作CD⊥AB于D,即$|\overrightarrow{AD}|=\frac{1}{2}$.
同理,$|\overrightarrow{BD}|=\frac{3}{2}$,∴$|\overrightarrow{AB}|=2$,A(-1,0),B(1,0),
设双曲线方程$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$,$C(-\frac{1}{2},h)$,E(x1,y1),
由$3\overrightarrow{BE}=2\overrightarrow{EC}$,得$\left\{\begin{array}{l}{{x}_{1}=\frac{2}{5}}\\{{y}_{1}=\frac{2}{5}h}\end{array}\right.$,
∵E,C两点在双曲线上,∴$\left\{\begin{array}{l}{\frac{1}{4{a}^{2}}-\frac{{h}^{2}}{{b}^{2}}=1}\\{\frac{4}{25{a}^{2}}-\frac{4{h}^{2}}{25{b}^{2}}=1}\\{{c}^{2}={a}^{2}+{b}^{2}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}^{2}=\frac{1}{7}}\\{{b}^{2}=\frac{6}{7}}\end{array}\right.$,
∴双曲线方程为$\frac{{x}^{2}}{\frac{1}{7}}-\frac{{y}^{2}}{\frac{6}{7}}=1$;
(II)设M(x1,y1),N(x2,y2),由条件知|TM|=|TN|,
得$\sqrt{{{y}_{1}}^{2}+({x}_{1}-{x}_{0})^{2}}=\sqrt{{{y}_{2}}^{2}+({x}_{2}-{x}_{0})^{2}}$,
∴${{y}_{1}}^{2}-{{y}_{2}}^{2}=({x}_{2}-{x}_{0})^{2}-({x}_{1}-{x}_{0})^{2}=({{x}_{2}}^{2}-{{x}_{1}}^{2})$+2x0(x1-x2)  ①,
又M,N在双曲线上,满足$7{{x}_{1}}^{2}-\frac{7}{6}{{y}_{1}}^{2}=1$,$7{{x}_{2}}^{2}-\frac{7}{6}{{y}_{2}}^{2}=1$,
∴${{y}_{1}}^{2}-{{y}_{2}}^{2}=6({{x}_{1}}^{2}-{{x}_{2}}^{2})$  ②,
将②代入①,$7({{x}_{1}}^{2}-{{x}_{2}}^{2})=2{x}_{0}({x}_{1}-{x}_{2})$,由条件知x1≠x2
∴7(x1+x2)=2x0
又x1>$\frac{\sqrt{7}}{7}$,x2>$\frac{\sqrt{7}}{7}$,x1≠x2
∴${x}_{0}=\frac{7}{2}({x}_{1}+{x}_{2})$>$\sqrt{7}$,
∴x0的取值范围为($\sqrt{7}$,+∞).

点评 本题考查双曲线标准方程的求法,考查了双曲线的简单性质,训练了直线与双曲线位置关系的应用,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.甲、乙两人同时应聘一个工作岗位,若甲、乙被应聘的概率分别为0.5和0.6,两人被聘用是相互独立的,则甲、乙两人中最多有一人被聘用的概率为0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(x+1)a+1(a>0),则“a是奇数”是“x=-1是函数f(x)的一个极值点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为(  )
A.6+$\frac{2π}{3}$B.8+$\frac{π}{3}$C.4+$\frac{2π}{3}$D.4+$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC中,∠B=60°,b=2$\sqrt{3}$,则△ABC周长的最大值为(  )
A.2B.2$\sqrt{3}$C.3$\sqrt{3}$D.6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列计算S的值的选项中,不能设计算法求解的是(  )
A.S=1+2+3+…+10000000B.S=1+2+3+4
C.S=1+2+3+…+n(n≥2且n∈N)D.S=12+22+32+…+1002

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是(  )
A.12.5,12.5B.13.5,13C.13.5,12.5D.13,13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.[文]若sin($\frac{π}{6}$-θ)=$\frac{1}{2}$,则cos($\frac{2π}{3}$+2θ)的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、M分别是棱AB、BC和DD1 所在直线上的动点.
(1)求∠EB1F的取值范围;
(2)若E、F分别为AB、BC的中点,求二面角B1-EF-B的大小;
(3)若E、F分别是所在正方体棱的中点,试问在棱DD1上能否找到一点M,使BM⊥平面EFB1?若能,试确定点M的位置;若不能,请说明理由.

查看答案和解析>>

同步练习册答案