精英家教网 > 高中数学 > 题目详情
12.[文]若sin($\frac{π}{6}$-θ)=$\frac{1}{2}$,则cos($\frac{2π}{3}$+2θ)的值为-$\frac{1}{2}$.

分析 首先运用$\frac{π}{2}$-α的诱导公式,再由二倍角的余弦公式:cos2α=2cos2α-1,即可得到.

解答 解:由于sin($\frac{π}{6}$-θ)=$\frac{1}{2}$,
则cos($\frac{π}{3}$+θ)=sin($\frac{π}{6}$-θ)=$\frac{1}{2}$,
则有cos($\frac{2π}{3}$+2θ)=cos2($\frac{π}{3}$+θ)
=2cos2($\frac{π}{3}$+θ)-1=2×($\frac{1}{2}$)2-1=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 本题考查诱导公式和二倍角的余弦公式及运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若△ABC的周长为5+$\sqrt{7}$,面积为$\frac{3\sqrt{3}}{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的边AB在直角坐标平面的x轴上,AB的中点为坐标原点,若$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|}$=$\frac{1}{2}$,$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|}$=$\frac{3}{2}$,又E点在BC边上,且满足3$\overrightarrow{BE}$=2$\overrightarrow{EC}$,以A、B为焦点的双曲线经过C、E两点.
(I)求|$\overrightarrow{AB}$|及此双曲线的方程;
(II)若圆心为T(x0,0)的圆与双曲线右支在第一象限交于不同两点M,N,求T点横坐标x0取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出一个如图所示的程序框图,若要使输出的y值是输入的x值的2倍,则这样的x值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C对边分别为a,b,c.设向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),$\overrightarrow{p}$=(b-2,a-2).
(Ⅰ) 若$\overrightarrow{m}$∥$\overrightarrow{n}$,求证:△ABC为等腰三角形;
(Ⅱ) 已知c=2,C=$\frac{π}{3}$,若$\overrightarrow{m}$⊥$\overrightarrow{p}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线的一条渐近线为y=2x,且经过抛物线y2=4x的焦点,则双曲线的标准方程为${x^2}-\frac{y^2}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最小值,则下列结论正确的是(  )
A.f($\frac{π}{2}$)<f($\frac{π}{6}$)<f(0)B.f(0)<f($\frac{π}{2}$)<f($\frac{π}{6}$)C.f($\frac{π}{6}$)<f(0)<f($\frac{π}{2}$)D.f($\frac{π}{2}$)<f(0)<f($\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=($\frac{1}{3}$,tanα),$\overrightarrow{b}$=(cosα,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则cos 2α=(  )
A.$\frac{1}{9}$B.$-\frac{1}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B.x=1是x2-3x+2=0的充分不必要条件
C.若“p或q”为假命题,则非p为真命题
D.对于命题p:存在x>0,使得x2-3x+2<0,则非p:任意x≤0,使x2-3x+2≥0

查看答案和解析>>

同步练习册答案