分析 首先运用$\frac{π}{2}$-α的诱导公式,再由二倍角的余弦公式:cos2α=2cos2α-1,即可得到.
解答 解:由于sin($\frac{π}{6}$-θ)=$\frac{1}{2}$,
则cos($\frac{π}{3}$+θ)=sin($\frac{π}{6}$-θ)=$\frac{1}{2}$,
则有cos($\frac{2π}{3}$+2θ)=cos2($\frac{π}{3}$+θ)
=2cos2($\frac{π}{3}$+θ)-1=2×($\frac{1}{2}$)2-1=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.
点评 本题考查诱导公式和二倍角的余弦公式及运用,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{π}{2}$)<f($\frac{π}{6}$)<f(0) | B. | f(0)<f($\frac{π}{2}$)<f($\frac{π}{6}$) | C. | f($\frac{π}{6}$)<f(0)<f($\frac{π}{2}$) | D. | f($\frac{π}{2}$)<f(0)<f($\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $-\frac{1}{9}$ | C. | -$\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” | |
| B. | x=1是x2-3x+2=0的充分不必要条件 | |
| C. | 若“p或q”为假命题,则非p为真命题 | |
| D. | 对于命题p:存在x>0,使得x2-3x+2<0,则非p:任意x≤0,使x2-3x+2≥0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com