精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=($\frac{1}{3}$,tanα),$\overrightarrow{b}$=(cosα,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则cos 2α=(  )
A.$\frac{1}{9}$B.$-\frac{1}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

分析 直接利用向量共线的充要条件列出方程求解,然后利用二倍角公式求解即可.

解答 解:向量$\overrightarrow{a}$=($\frac{1}{3}$,tanα),$\overrightarrow{b}$=(cosα,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
可得tanαcosα=$\frac{2}{3}$,
期sinα=$\frac{2}{3}$.
cos2α=1-2sin2α=$\frac{1}{9}$
故选:A.

点评 本题考查向量共线的充要条件,二倍角的余弦函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为(  )
A.6+$\frac{2π}{3}$B.8+$\frac{π}{3}$C.4+$\frac{2π}{3}$D.4+$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.[文]若sin($\frac{π}{6}$-θ)=$\frac{1}{2}$,则cos($\frac{2π}{3}$+2θ)的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求角C的值;
(Ⅱ)若c=$\sqrt{3}$,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.cos(-330°)的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.样本容量为1000的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为680.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、M分别是棱AB、BC和DD1 所在直线上的动点.
(1)求∠EB1F的取值范围;
(2)若E、F分别为AB、BC的中点,求二面角B1-EF-B的大小;
(3)若E、F分别是所在正方体棱的中点,试问在棱DD1上能否找到一点M,使BM⊥平面EFB1?若能,试确定点M的位置;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=sinx,x∈[-π,π],则不等式f(x)≤-$\frac{1}{2}$的解集为{x丨-$\frac{5π}{6}$≤x≤-$\frac{π}{6}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b>0,a+2b=1,则t=$\frac{1}{a}$+$\frac{1}{b}$的最小值是(  )
A.3+2$\sqrt{2}$B.3-2$\sqrt{2}$C.1+2$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

同步练习册答案