分析 求出函数的导数,由于函数f(x)=kx-lnx在区间(1,+∞)单调,可得f′(x)≥0或f′(x)≤0在区间(1,+∞)上恒成立,解出即可.
解答 解:f′(x)=k-$\frac{1}{x}$,
∵函数f(x)=kx-lnx在区间(1,+∞)单调,
∴f′(x)≥0在区间(1,+∞)上恒成立,
或f′(x)≤0在区间(1,+∞)上恒成立,
∴k≥$\frac{1}{x}$或k≤$\frac{1}{x}$,
而y=$\frac{1}{x}$在区间(1,+∞)上单调递减,
∴k≥1或k≤0
∴k的取值范围是(-∞,0]∪[1,+∞),
故答案为:(-∞,0]∪[1,+∞).
点评 本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 70 | B. | 60 | C. | 50 | D. | 56 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6+$\frac{2π}{3}$ | B. | 8+$\frac{π}{3}$ | C. | 4+$\frac{2π}{3}$ | D. | 4+$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 6$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12.5,12.5 | B. | 13.5,13 | C. | 13.5,12.5 | D. | 13,13 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com