分析 先根据题意求出斜率,确定被积函数与被积区间,求出原函数,即可得到结论.
解答 解:y=e2x在点(0,1)处的切线的斜率为k,
∴y′=2e2x,
∴y′|x=0=2=k,
∴y=2x,
联立方程组得$\left\{\begin{array}{l}{y=2x}\\{y={x}^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,
∴直线y=kx与曲线y=x2所围成的封闭图形的面积为${∫}_{0}^{2}$(2x-x2)dx=(x2-$\frac{1}{3}$x3)|${\;}_{0}^{2}$=4-$\frac{8}{3}$=$\frac{4}{3}$,
故答案为:$\frac{4}{3}$
点评 本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{7}{6}$,$\frac{1}{2}}$) | B. | (-$\frac{7}{6}$,$\frac{1}{2}}$) | C. | [-1,$\frac{7}{3}}$) | D. | (-1,$\frac{7}{3}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com