精英家教网 > 高中数学 > 题目详情
17.若曲线y=e2x在点(0,1)处的切线的斜率为k,则直线y=kx与曲线y=x2所围成的封闭图形的面积为$\frac{4}{3}$.

分析 先根据题意求出斜率,确定被积函数与被积区间,求出原函数,即可得到结论.

解答 解:y=e2x在点(0,1)处的切线的斜率为k,
∴y′=2e2x
∴y′|x=0=2=k,
∴y=2x,
联立方程组得$\left\{\begin{array}{l}{y=2x}\\{y={x}^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,
∴直线y=kx与曲线y=x2所围成的封闭图形的面积为${∫}_{0}^{2}$(2x-x2)dx=(x2-$\frac{1}{3}$x3)|${\;}_{0}^{2}$=4-$\frac{8}{3}$=$\frac{4}{3}$,
故答案为:$\frac{4}{3}$

点评 本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.曲线f(x)=lnx-2x在点(1,-2)处的切线方程为(  )
A.x+y+1=0B.2x+y=0C.x-y-3=0D.2x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若复数z=$\frac{1-i}{1+i}$,则复数z的共轭复数为i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列函数在(0,+∞)上是减函数的有(2)(4)
(1)y=2x+1;(2)y=$\frac{2}{x}$;(3)y=-x2+2x;(4)y=-x2-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{x-y+m≤0}\end{array}\right.$且目标函数z=2x+y的最大值为7,则m值是(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若△ABC的周长为5+$\sqrt{7}$,面积为$\frac{3\sqrt{3}}{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{{\begin{array}{l}{|{x+1}|,x≤0}\\{|{{{log}_3}x}|,x>0}\end{array}}$,若方程f(x)-a=0的四个根分别为x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{1}{{{x_3}({{x_1}+{x_2}})}}$+$x_3^2{x_4}$的取值范围是(  )
A.[-$\frac{7}{6}$,$\frac{1}{2}}$)B.(-$\frac{7}{6}$,$\frac{1}{2}}$)C.[-1,$\frac{7}{3}}$)D.(-1,$\frac{7}{3}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C对边分别为a,b,c.设向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),$\overrightarrow{p}$=(b-2,a-2).
(Ⅰ) 若$\overrightarrow{m}$∥$\overrightarrow{n}$,求证:△ABC为等腰三角形;
(Ⅱ) 已知c=2,C=$\frac{π}{3}$,若$\overrightarrow{m}$⊥$\overrightarrow{p}$,求△ABC的面积S.

查看答案和解析>>

同步练习册答案