| A. | -3 | B. | 3 | C. | -2 | D. | 2 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,先求目标函数取得最大值时的最对应的m的值,即可得到结论.
解答
解:作出不等式组$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{x-y+m≤0}\end{array}\right.$对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大.
此时z最大为2x+y=7.
由$\left\{\begin{array}{l}{2x+y=7}\\{x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即A(3,1),
同时A也在x-y+m=0上,
解得m=-x+y=-3+1=-2.
故选:C.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M={x∈R|x2+0.01=0},P={x|x2=0} | B. | M={(x,y)|y=x2,x∈R},P={y|y=x2,x∈R} | ||
| C. | M={y|y=t2+1,t∈R},P={t|t=(y-1)2+1,y∈R} | D. | M={x|x=2k,k∈Z},P={x|x=4k+2,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤2016 | B. | a>2016 | C. | a≤2015 | D. | a>2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-1}}$ | B. | Sn=3-$\frac{n+1}{{2}^{n}}$-1-$\frac{1}{{2}^{n-2}}$ | ||
| C. | Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-2}}$ | D. | Sn=3-n2n--$\frac{1}{{2}^{n-2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 70 | B. | 60 | C. | 50 | D. | 56 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com