分析 (1)取PA的中点为G,连接BG、EG,得到四边形BGEC为平行四边形,所以EC∥BG;
(2)因为AB⊥AD,BC∥AD,AB=BC,AD=2BC,易证得CD⊥AC.判断CD⊥平面PAC.
解答
证明:(1)取PA的中点为G,连接BG、EG,则EG∥$\frac{1}{2}$AD,EG=$\frac{1}{2}$AD,
又BC∥AD,BC=$\frac{1}{2}$AD,所以EG∥BC,EG=BC,四边形BGEC为平行四边形.
所以EC∥BG.
又EC?平面PAB,BG?平面PAB,
故EC∥平面PAB.
(2)因为AB⊥AD,BC∥AD,AB=BC,AD=2BC,易证CD⊥AC.
因为PA⊥平面ABCD,所以PA⊥CD,
因为PA∩AC=A,所以CD⊥平面PAC.
点评 本题考查了线面平行的判定定理以及线面垂直的判定定理的运用关键是熟练定理和性质的运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2+e] | B. | (-∞,-1+e] | C. | [2-e,+∞) | D. | [1-e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)是奇函数 | B. | f(x)在R上存在最值 | C. | f(x)的值域为R | D. | f(x)不是周期函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com