| A. | (-∞,-2+e] | B. | (-∞,-1+e] | C. | [2-e,+∞) | D. | [1-e,+∞) |
分析 求出函数的导数,问题转化为k≥$\frac{1}{x}$-ex在(1,+∞)恒成立,令g(x)=$\frac{1}{x}$-ex,(x>1),求出k的范围即可.
解答 解:f′(x)=ex+k-$\frac{1}{x}$,
若函数f(x)在区间(1,+∞)单调递增,
则k≥$\frac{1}{x}$-ex在(1,+∞)恒成立,
令g(x)=$\frac{1}{x}$-ex,(x>1),
g′(x)=-$\frac{1}{{x}^{2}}$-ex<0,
g(x)在(1,+∞)递减,
∴g(x)<g(1)=1-e,
∴k≥1-e,
故选:D.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | -2018 | B. | -2019 | C. | 2019 | D. | 2018 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,1] | C. | $(-∞,\frac{3}{2})$ | D. | $(-∞,\frac{3}{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-1}}$ | B. | Sn=3-$\frac{n+1}{{2}^{n}}$-1-$\frac{1}{{2}^{n-2}}$ | ||
| C. | Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-2}}$ | D. | Sn=3-n2n--$\frac{1}{{2}^{n-2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com