精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=Asin(2x+φ),x∈R,A>0,φ∈(0,$\frac{π}{2}$),且f($\frac{π}{12}$)=f($\frac{π}{4}$)=$\sqrt{3}$.
(Ⅰ)求A,φ的值;
(Ⅱ)若f(x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求sin(2x0-$\frac{π}{12}$)的值.

分析 (Ⅰ)由题意可知:f($\frac{π}{12}$)=f($\frac{π}{4}$)=$\sqrt{3}$,由正弦函数的对称性及φ的取值范围可知($\frac{π}{6}$+φ)+($\frac{π}{2}$+φ)=π,求得φ的值,代入f($\frac{π}{12}$)=$\sqrt{3}$,即可求得A的值;
(Ⅱ)由(Ⅰ)可知f(x0)=2sin(2x0+$\frac{π}{6}$)=$\frac{6}{5}$,求得sin(2x0+$\frac{π}{6}$)=$\frac{3}{5}$,根据x0∈[$\frac{π}{4}$,$\frac{π}{2}$],即≤2x0+$\frac{π}{6}$≤$\frac{7π}{6}$,可知cos(2x0+$\frac{π}{6}$)<0,根据同角三角函数的基本关系,cos(2x0+$\frac{π}{6}$)=$\sqrt{1-si{n}^{2}(2{x}_{0}+\frac{π}{6})}$,利用两角差的正弦公式求得sin(2x0-$\frac{π}{12}$)=sin[(2x0+$\frac{π}{6}$)-$\frac{π}{4}$],即可求得sin(2x0-$\frac{π}{12}$)的值.

解答 解:(Ⅰ)∵f($\frac{π}{12}$)=f($\frac{π}{4}$)=$\sqrt{3}$,
∴Asin($\frac{π}{6}$+φ)=Asin($\frac{π}{2}$+φ)=$\sqrt{3}$,…(1分)
∵φ∈(0,$\frac{π}{2}$),…(2分)
∴($\frac{π}{6}$+φ)+($\frac{π}{2}$+φ)=π,
∴φ=$\frac{π}{6}$,…(3分)
∴Asin($\frac{π}{6}$+$\frac{π}{6}$)=$\sqrt{3}$,…(5分)
∴A=2,
∴A=2,φ=$\frac{π}{6}$;   …(6分)
(Ⅱ)由(Ⅰ)可知:f(x)=2sin(2x+$\frac{π}{6}$),
f(x0)=2sin(2x0+$\frac{π}{6}$)=$\frac{6}{5}$,
∴sin(2x0+$\frac{π}{6}$)=$\frac{3}{5}$…(7分)
x0∈[$\frac{π}{4}$,$\frac{π}{2}$],
∴$\frac{2π}{3}$≤2x0+$\frac{π}{6}$≤$\frac{7π}{6}$,…(8分)
∴cos(2x0+$\frac{π}{6}$)<0,
∴cos(2x0+$\frac{π}{6}$)=$\sqrt{1-si{n}^{2}(2{x}_{0}+\frac{π}{6})}$=-$\frac{4}{5}$,…(9分)
∴sin(2x0-$\frac{π}{12}$)=sin[(2x0+$\frac{π}{6}$)-$\frac{π}{4}$]=$\frac{7\sqrt{2}}{10}$,
∴sin(2x0-$\frac{π}{12}$)=$\frac{7\sqrt{2}}{10}$.    …(12分)

点评 本题考查求正弦函数的解析式的方法,考查正弦函数图象及性质,同角三角函数基本关系,两角和差的正弦公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{x-y+m≤0}\end{array}\right.$且目标函数z=2x+y的最大值为7,则m值是(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设{an}是各项均为正数的等比数列,Sn为其前n项和,若S4=10S2,则此数列的公比q的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是(  )
A.$\frac{1}{1000}$B.$\frac{1}{999}$C.$\frac{1}{2}$D.$\frac{999}{1000}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(sinα,cosα),$\overrightarrow{b}$=(sinα,sinα),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin(2α-$\frac{π}{4}$)等于(  )
A.-$\frac{\sqrt{2}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C对边分别为a,b,c.设向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),$\overrightarrow{p}$=(b-2,a-2).
(Ⅰ) 若$\overrightarrow{m}$∥$\overrightarrow{n}$,求证:△ABC为等腰三角形;
(Ⅱ) 已知c=2,C=$\frac{π}{3}$,若$\overrightarrow{m}$⊥$\overrightarrow{p}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合M={-1,0,1},N={0,1,2},则M∪N={-1,0,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某学校有36个班,每个班有56名同学都是从1到56编的号码.为了交流学习经验,要求每班号码为14的同学留下进行交流,这里运用的是       (  )
A.分层抽样B.抽签抽样C.随机抽样D.系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}是等比数列,其前n项和Sn=3n-1+k(n∈N*),则常数k=$-\frac{1}{3}$.

查看答案和解析>>

同步练习册答案