精英家教网 > 高中数学 > 题目详情
10.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是(  )
A.$\frac{1}{1000}$B.$\frac{1}{999}$C.$\frac{1}{2}$D.$\frac{999}{1000}$

分析 简化模型,只考虑第999次出现的结果,有两种结果,第999次出现正面朝上只有一种结果,即可求出.

解答 解:抛掷一枚质地均匀的硬币,只考虑第999次,
有两种结果:正面朝上,反面朝上,每中结果等可能出现,
故所求概率为$\frac{1}{2}$,
故选:C.

点评 本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列各选项中的M与P表示同一个集合的是(  )
A.M={x∈R|x2+0.01=0},P={x|x2=0}B.M={(x,y)|y=x2,x∈R},P={y|y=x2,x∈R}
C.M={y|y=t2+1,t∈R},P={t|t=(y-1)2+1,y∈R}D.M={x|x=2k,k∈Z},P={x|x=4k+2,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据的立方和为(  )
A.70B.60C.50D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC中,∠B=60°,b=2$\sqrt{3}$,则△ABC周长的最大值为(  )
A.2B.2$\sqrt{3}$C.3$\sqrt{3}$D.6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.小波以游戏的方式决定是去打球、唱歌还是去下棋.游戏规则为以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.
(1)写出数量积X的所有可能取值
(2)分别求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是(  )
A.12.5,12.5B.13.5,13C.13.5,12.5D.13,13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(2x+φ),x∈R,A>0,φ∈(0,$\frac{π}{2}$),且f($\frac{π}{12}$)=f($\frac{π}{4}$)=$\sqrt{3}$.
(Ⅰ)求A,φ的值;
(Ⅱ)若f(x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求sin(2x0-$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x>0,y>0,且x(x+y)=5x+y,则2x+y的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对任意一个非零复数z,定义集合Mz={w|w=zn,n∈N*}.设α是方程x+$\frac{1}{x}$=0的一个根,若在Ma中任取两个数,则其和为零的概率P=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案