精英家教网 > 高中数学 > 题目详情
已知数列{an}为等差数列,若a1=-3,11a5=5a8,则使前n项和Sn取最小值的n=________.
2
∵a1=-3,11a5=5a8,∴d=2,∴Sn=n2-4n=(n-2)2-4,∴当n=2时,Sn最小.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列项和为,向量,且
(1)求数列的通项公式;
(2)求的前项和,不等式对任意的正整数恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)分别求数列{an}、{bn}的通项公式;
(2)设Tn(n∈N*),若Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(1)已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32.若am=8,则m=________.
(2)设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下表定义函数f(x):
x
1
2
3
4
5
f(x)
5
4
3
1
2
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,求a2008.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记Sn是等差数列{an}前n项的和,Tn是等比数列{bn}前n项的积,设等差数列{an}公差d≠0,若对小于2011的正整数n,都有Sn=S2011-n成立,则推导出a1006=0.设等比数列{bn}的公比q≠1,若对于小于23的正整数n,都有Tn=T23-n成立,则(  )
A.b11=1B.b12=1C.b13=1D.b14=1

查看答案和解析>>

同步练习册答案