精英家教网 > 高中数学 > 题目详情
函数f(x)=2sin(
1
2
x+
π
4
)
,x∈[0,+∞)的周期、振幅、初相分别是(  )
A、π,2,
π
4
B、4π,2,-
π
4
C、4π,2,
π
4
D、2π,2,
π
8
分析:利用三角函数的参数的物理意义,直接求出函数f(x)=2sin(
1
2
x+
π
4
)
,x∈[0,+∞)的周期、振幅、初相.
解答:解:函数f(x)=2sin(
1
2
x+
π
4
)
,x∈[0,+∞)的周期T=
1
2
=4π
;振幅A=2;初相:
π
4

故选C.
点评:本题是基础题,考查三角函数的字母的物理意义,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sinωx(ω>0)在区间[-
π
3
π
4
]
上的最小值是-2,则ω的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2sinωx(ω>0)在[-
3
3
]
上单调递增,则ω的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)已知函数f (x)=2sin(ωx+?)(ω>0)的部分图象如图所示,则ω=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinωxcosωx-2
3
sin2ωx+
3
(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1-x2|的最小值为
π
2

(I)求ω的值;
(II)求函数f(x)的单调增区间;
(III)若f(a)=
2
3
,求sin(
5
6
π-4a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sin(x-
π
3
)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)讨论f(x)在[0,
π
2
]的单调性.

查看答案和解析>>

同步练习册答案