【题目】已知函数 下列四个命题: ①f(f(1))>f(3);
②x0∈(1,+∞), ;
③f(x)的极大值点为x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正确的有 . (写出所有正确命题的序号)
【答案】①②③④
【解析】解:函数f(x)的图形如图所示,
对于①,f(1)=2,f(f(1))=f(2)= ,f(3)= ,故①正确.
对于②,x>1时,f′(x)=﹣ =﹣ ,x= .故②正确.
对于③,根据图形可判断③正确.
对于④,x∈(0,+∞)时,1<f(x)≤2,
∴x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≤1正确
故答案为:①②③④
解:函数f(x)的图形如图所示,
对于①,f(1)=2,f(f(1))=f(2)= ,f(3)= ,.
对于②,x>1时,f′(x)=﹣ =﹣ ,x= ..
对于③,根据图形可判断.
对于④,由x∈(0,+∞)时,1<f(x)≤2,可判断
科目:高中数学 来源: 题型:
【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是 , , , ,女生闯过一至四关的概率依次是 , , , .
(Ⅰ)求男生甲闯关失败的概率;
(Ⅱ)设X表示四人冲关小组闯关成功的人数,求随机变量X的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为,边界忽略不计)即为中奖.
乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2球,若摸到的是2个相同颜色的球,则为中奖.
试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的倍.
(1)求a,b的值;
(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,解方程;
(2)当时,若不等式在上恒成立,求实数a的取值范围;
(3)若a为常数,且函数在区间上存在零点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有关部门从甲、乙两个城市所有的自动售货机中随机抽取了16台,记录下上午8:00~11:00之间各自的销售情况(单位:元):
甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;
乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.
试用两种不同的方式分别表示上面的数据,并简要说明各自的优点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三(三)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,3个音乐节目恰有两个节目连排,则不同排法的种数是( )
A.240
B.188
C.432
D.288
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com