【题目】已知函数, .
(1)若,求函数的单调递减区间;
(2)若关于的不等式恒成立,求整数的最小值;
(3)若,正实数, 满足,证明: .
【答案】(1);(2);(3)证明见解析.
【解析】试题分析:(1)由求出的值,再利用导数求出函数的单调递减区间;(2)分离出变量,令,只要,利用导数求出令的最大值即可;(3)由,即,令,则由,利用导数法求得,从而可得所以,解得即可.
试题解析:
(1)因为,所以,
此时, ,
,
由,得,又,所以,
所以的单调减区间为.
(2)由恒成立,得在上恒成立,
问题等价于在上恒成立,
令,只要,
因为,令,得.
设,因为,所以在上单调递减,
不妨设的根为,
当时, ;当时, ,
所以在上是增函数,在上是减函数,
所以 ,
因为, ,
所以,此时,即,
所以,即整数的最小值为2.
(3)当时, ,
由,即,
从而,
令,则由,得,
可知, 在区间上单调递减,在区间上单调递增,所以,
所以,因此成立.
科目:高中数学 来源: 题型:
【题目】现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了场, 各踢了场, 踢了场,且队与队未踢过, 队与队也未踢过,则在第一周的比赛中, 队踢的比赛的场数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的渐近线方程是,右焦点,则双曲线的方程为_________,又若点, 是双曲线的左支上一点,则周长的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2018·赣中联考]李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).
(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时, 取得最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, (为常数).
(1)若函数与函数在处有相同的切线,求实数的值;
(2)若,且,证明: ;
(3)若对任意,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑。若三棱锥P-ABC为鳖臑,PA⊥面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个顶点都在球的球面上,则球0的表面积为( )
A. 8πB. 12πC. 20πD. 24π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com