精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点F1(-,0),F2(,0),过F1且与坐标轴不平行的直线l1与椭圆相交于MN两点,△MNF2的周长等于8. 若过点(1,0)的直线l与椭圆交于不同两点PQx轴上存在定点E(m,0),使·恒为定值,则E的坐标为(  ▲  )
A.B.C.D.
C
因为直线经过点且与椭圆相交于点,而的周长为8
所以,解得,故椭圆方程为
当直线斜率不存在时,直线方程为,此时坐标为,从而有

当直线斜率存在时,设直线方程为,联立

坐标为,则

因为恒为定值,所以,解得
此时,符合条件
所以点坐标为,故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆C的左、右焦点分别为F1F2A是椭圆C上的一点,,坐标原点O到直线AF1的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l x轴于点,交 y轴于点M,若,求直线l 的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆上的一点,是焦点,且,则的面积为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点为,过点且斜率为正数的直线交椭圆两点,且成等差数列。
(1)求椭圆的离心率;
(2)若直线与椭圆交于两点,求使四边形的面积最大时的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆上的点,F1、F2分别是椭圆的左、右焦点,若,则的面积为( )
A.3B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的最大面积为.
(I)求椭圆的方程。
(II)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到
两个焦点的距离之和为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为,过点的直线与该椭圆交于点,
为邻边作平行四边形,求该平行四边形对角线的长度
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的椭圆的一个焦点为为椭圆上一点,的面积为
(1)求椭圆的方程;
(2)是否存在平行于的直线,使得直线与椭圆相交于两点,且以线段为有经的圆恰好经过原点?若存在,求出的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案