分析 (1)通过讨论x的范围求出不等式的解集即可;(2)根据基本不等式的性质证明即可.
解答 解:(1)由f(x)<1,得|x-1|+|3x-$\frac{3}{4}$|<1可化为:
$\left\{\begin{array}{l}{x≤\frac{1}{4}}\\{\frac{7}{4}-4x<1}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{4}<x<1}\\{2x+\frac{1}{4}<1}\end{array}\right.$或$\left\{\begin{array}{l}{x≥1}\\{4x-\frac{7}{4}<1}\end{array}\right.$,
得$\frac{3}{16}$<x<$\frac{3}{8}$,
所以f(x)<1的解集为:{x|$\frac{3}{16}$<x<$\frac{3}{8}$};
(2)因为a+b+c=$\frac{3}{2}$,
所以:$\frac{{b}^{2}}{a}$+a+$\frac{{c}^{2}}{b}$+b+$\frac{{a}^{2}}{c}$+c≥2(a+b+c)=3,
所以:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥$\frac{3}{2}$.
点评 本题考查了解绝对值不等式问题,考查基本不等式的性质,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{3}$ | C. | $\frac{19}{5}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x→y=|x| | B. | x→y=$\frac{1}{{{{({x-1})}^2}}}$ | C. | $x→y={({\frac{1}{2}})^x}$ | D. | $x→y=\sqrt{{{({\frac{1}{2}})}^x}-1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com