精英家教网 > 高中数学 > 题目详情
7.已知f(x)=$\frac{x+1}{x}$,则f(1)等于(  )
A.1B.2C.3D.4

分析 利用函数性质直接求解.

解答 解:∵f(x)=$\frac{x+1}{x}$,
∴f(1)=$\frac{1+1}{1}=2$.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,某市在海岛A上建了一水产养殖中心.在海岸线l上有相距70公里的B、C两个小镇,并且AB=30公里,AC=80公里,已知B镇在养殖中心工作的员工有3百人,C镇在养殖中心工作的员工有5百人.现欲在BC之间建一个码头D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为1:2.
(1)求sin∠ABC的大小;
(2)设∠ADB=θ,试确定θ的大小,使得运输总成本最少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若等差数列{an}的前n项和为Sn,且S6=3,a4=2,则a5等于(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{({x+1})^2},x<1\\{2^{x-2}},x≥1\end{array}$,则f(f(0))的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|x2-3x<0},B={x|(x+2)(4-x)≥0},C={x|a<x≤a+1}.
(1)求A∩B;
(2)若B∪C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用“>”或“<”或“=”填空:1.70.3>0.911

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某校高三年级有1221名同学,现采用系统抽样方法舟曲37名同学做问卷调查,将1221名同学按1,2,3,4,…,1221随机编号,则抽取的37名同学中,标号落入区间[496,825]的人数有(  )
A.12人B.11人C.10人D.9分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-1|+|3x-$\frac{3}{4}$|.
(1)求不等式f(x)<1的解集;
(2)若实数a,b,c满足a>0,b>0,c>0且a+b+c=$\frac{3}{2}$.求证:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案