精英家教网 > 高中数学 > 题目详情
18.若等差数列{an}的前n项和为Sn,且S6=3,a4=2,则a5等于(  )
A.5B.6C.7D.8

分析 利用等差数列的通项公式与求和公式即可得出.

解答 解:设等差数列{an}的公差为d,∵S6=3,a4=2,
∴6a1+$\frac{6×5}{2}$d=3,a1+3d=2,
解得a1=-7,d=3.
则a5=-7+3×4=5,
故选:A.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an} 为等比数列,等差数列{bn} 的前n 项和为Sn (n∈N* ),且满足:S13=208,S9-S7=41,a1=b2,a3=b3
(1)求数列{an},{bn} 的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn; 
(3)设cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,问是否存在正整数m,使得cm•cm+1•cm+2+8=3(cm+cm+1+cm+2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某重点高中拟把学校打造成新型示范高中,为此制定了学生“七不准”,“一日三省十问”等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组:[50,60),60,70),[70,80),[80,90),[90,100],并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中的x、y的值;
(2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在[50,60)内的概率.
5
6
7
8
9
3  4



1  2  3  4  5  6   7  8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)在定义域(0,+∞)上是单调函数,若对任意x∈(0,+∞),都有$f[f(x)-\frac{1}{x}]=2$,则$f(\frac{1}{7})$的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}是等比数列,数列{bn}是等差数列,若a1•a5•a9=-8,b2+b5+b8=6π,则$cos\frac{{{b_4}+{b_6}}}{{1-{a_3}•{a_7}}}$的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若等差数列{an}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下列函数:①f(x)=$\frac{{{x^2}-1}}{x-1}$,g(x)=x+1;②f(x)=|x|,g(x)=$\sqrt{x^2}$;③f(x)=x2-2x-1,g(t)=t2-2t-1.其中,是同一函数的是(  )
A.①②③B.①③C.②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\frac{x+1}{x}$,则f(1)等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A=R,集合B={y|y>0},下列对应关系中是从集合A到集合B的映射的是(  )
A.x→y=|x|B.x→y=$\frac{1}{{{{({x-1})}^2}}}$C.$x→y={({\frac{1}{2}})^x}$D.$x→y=\sqrt{{{({\frac{1}{2}})}^x}-1}$

查看答案和解析>>

同步练习册答案