精英家教网 > 高中数学 > 题目详情
5.若点(x,y)在双曲线$\frac{{x}^{2}}{4}$-y2=1上,则3x2-2xy的最小值是6+4$\sqrt{2}$.

分析 由双曲线的标准方程可知:则x=2secα,y=tanα,由3x2-2xy=12sec2α-4secαtanα=$\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$,由-1<sinα<1,1-sinα>0,1+sinα>0,由基本不等式的性质可知∴[(1-sinα)+(1+sinα)]•($\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$)≥12+2$\sqrt{\frac{4(1+sinα)}{1-sinα}×\frac{8(1-sinα)}{1+sinα}}$=12+8$\sqrt{2}$,则$\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$≥6+4$\sqrt{2}$,即可求得3x2-2xy的最小值.

解答 解:由线$\frac{{x}^{2}}{4}$-y2=1,设x=2secα,y=tanα,
3x2-2xy=12sec2α-4secαtanα,
=$\frac{12}{co{s}^{2}α}$-$\frac{4sinα}{co{s}^{2}α}$,
=$\frac{12-4sinα}{co{s}^{2}α}$
=$\frac{12-4sinα}{1-si{n}^{2}α}$,
=$\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$
∵-1<sinα<1,
1-sinα>0,1+sinα>0
∴[(1-sinα)+(1+sinα)]•($\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$),
=12+$\frac{4(1+sinα)}{1-sinα}$+$\frac{8(1-sinα)}{1+sinα}$≥12+2$\sqrt{\frac{4(1+sinα)}{1-sinα}×\frac{8(1-sinα)}{1+sinα}}$=12+8$\sqrt{2}$,
当且仅当$\frac{4(1+sinα)}{1-sinα}$=$\frac{8(1-sinα)}{1+sinα}$等号成立,
解得:sinα=3-2$\sqrt{2}$(3+2$\sqrt{2}$舍去)时,取得最小值,
∵[(1-sinα)+(1+sinα)]•($\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$)=2($\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$),
$\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$≥6+4$\sqrt{2}$,
∴3x2-2xy的最小值是6+4$\sqrt{2}$,
故答案为:6+4$\sqrt{2}$.

点评 本题考查双曲线的参数方程,三角恒等变换,基本不等式性质的综合应用,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{({x+1})^2},x<1\\{2^{x-2}},x≥1\end{array}$,则f(f(0))的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-1|+|3x-$\frac{3}{4}$|.
(1)求不等式f(x)<1的解集;
(2)若实数a,b,c满足a>0,b>0,c>0且a+b+c=$\frac{3}{2}$.求证:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知一组数据3,4,5,a,b的平均数是4,中位数是m,从3,4,5,a,b,m这组数据中任取一数,取到数字4的概率为$\frac{2}{3}$,那么3,4,5,a,b这组数据的方差为(  )
A.$\sqrt{2}$B.2C.$\frac{{\sqrt{10}}}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.高二年级学生体检后,对学生体重进行抽样统计,其中一个男生体重的样本直方图如图所示,若这个样本的中位数为62,则x的值为(  )
A.0.044B.0.039C.0.01D.0.04

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={x|y=$\sqrt{x-1}$},B={y|y=$\sqrt{x-1}$},则(  )
A.A=BB.A∩B=∅C.A∩B=AD.A∪B=A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=$\frac{3}{1+2co{s}^{2}θ}$,直线l的极坐标方程为ρ=$\frac{4}{sinθ+cosθ}$.
(Ⅰ)写出曲线C1与直线l的直角坐标方程;
(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正方体ABCD-A1B1C1D1的棱长为1,则点C1到直线BD的距离为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案