精英家教网 > 高中数学 > 题目详情
3.袋中有3个红球,4个黄球,2个白球(球除颜色外其余均相同),从中不放回的摸球,用A表示第一次摸到的是白球,用B表示第二次摸到的是黄球,则在事件A发生的前提下事件B发生的概率为(  )
A.$\frac{4}{5}$B.$\frac{4}{9}$C.$\frac{2}{7}$D.$\frac{1}{2}$

分析 在事件A发生的前提下,袋中还有3个红球,4个黄球,1个白球共8个球,由此利用等可能事件概率计算公式能求出在事件A发生的前提下事件B发生的概率.

解答 解:∵袋中有3个红球,4个黄球,2个白球(球除颜色外其余均相同),
从中不放回的摸球,用A表示第一次摸到的是白球,用B表示第二次摸到的是黄球,
∴在事件A发生的前提下,袋中还有3个红球,4个黄球,1个白球共8个球,
∴在事件A发生的前提下事件B发生的概率为:p=$\frac{4}{8}=\frac{1}{2}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,四边形OABC,ODEF,OGHI是三个全等的菱形,∠COD=∠FOG=∠IOA=60°,设$\overrightarrow{OD}$=$\overrightarrow{a}$,$\overrightarrow{OH}$=$\overrightarrow{b}$,已知点P在各菱形边上运动,且$\overrightarrow{OP}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,x,y∈R,则x+y的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用描述法表示集合:不大于6的非负整数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x2-2x+2,(其中x∈[t,t+1],t∈R)的最小值为g(t),最大值为h(t),求g(t),h(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知0≤x≤1时,不等式-4x2+4ax-4a-a2≤-5恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,已知向量$\overrightarrow{AD}$=$\overrightarrow{DB}$,$\overrightarrow{DF}$=$\overrightarrow{BE}$,求证:$\overrightarrow{DE}$=$\overrightarrow{AF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数f(x)=2x2+3x-4,当x∈[t-2,t+2]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点M是△ABC的重心,$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{AC}$=$\overrightarrow{{e}_{2}}$,用$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$表示$\overrightarrow{MC}$=$\frac{2}{3}\overrightarrow{{e}_{2}}$$-\frac{1}{3}$$\overrightarrow{{e}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设两条直线的方程分别为x+y+a=0和 x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤$\frac{1}{8}$,则这两条直线间距离的最大值和最小值分别为(  )
A.$\frac{{\sqrt{2}}}{4},\frac{1}{2}$B.$\sqrt{2},\frac{{\sqrt{2}}}{2}$C.$\sqrt{2},\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2},\frac{1}{2}$

查看答案和解析>>

同步练习册答案