精英家教网 > 高中数学 > 题目详情

【题目】选修4—4:坐标系与参数方程
在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是 t为参数),lC交于AB两点,∣AB∣= ,求l的斜率。

【答案】
(1)

解:整理圆的方程得

可知圆 的极坐标方程为


(2)

解:记直线的斜率为 ,则直线的方程为

由垂径定理及点到直线距离公式知:

,整理得 ,则


【解析】(1)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2 , x=ρcosα,y=ρsinα,能求出圆C的极坐标方程.(2)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.
【考点精析】认真审题,首先需要了解圆的标准方程(圆的标准方程:;圆心为A(a,b),半径为r的圆的方程).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的交点为F,准线为l,过点F的直线与抛物线交于M,N两点,若MR⊥l,垂足为R,且∠NRM=∠NMR,则直线MN的斜率为(
A.±8
B.±4
C.±2
D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 1(a> )的右焦点为F,右顶点为A,已知 ,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面与平面交于直线是平面内不同的两点,是平面内不同的两点,且不在直线上,分别是线段的中点,下列命题中正确的个数为( )

①若相交,且直线平行于时,则直线也平行;

②若是异面直线时,则直线可能与平行;

③若是异面直线时,则不存在异于的直线同时与直线都相交;

两点可能重合,但此时直线不可能相交

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点M(m, 0)在x轴的正半轴上,过M点的直线与抛物线 C相交于A,B两点,O为坐标原点.

(1) 若m=l,且直线的斜率为1,求以AB为直径的圆的方程;

(2) 是否存在定点M,使得不论直线绕点M如何转动, 恒为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于BC两点.

(1)求该椭圆的离心率;

(2)设直线ABAC分别与直线x=4交于点MN,问:x轴上是否存在定点P使得MPNP?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1x2y2-4x-2y-5=0与圆C2x2y2-6xy-9=0.

(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;

(3)在平面上找一点P,过P点引两圆的切线并使它们的长都等于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中,a1=2,a3+2a2a4的等差中项.

(1)求数列的通项公式;

(2)log2,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC△VAB为等边三角形,AC⊥BCAC=BC=OM分别为ABVA的中点.

1)求证:VB∥平面MOC

2)求证:平面MOC⊥平面VAB

3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

同步练习册答案