【题目】已知等比数列中,a1=2,a3+2是a2和a4的等差中项.
(1)求数列的通项公式;
(2)记=log2,求数列的前n项和.
【答案】(1)=2n;(2)2+(n-1)·2n+1.
【解析】
(1)设等比数列的公比,结合等差中项列式,最后解出公比即可求得通项;
(2)将数列的通项公式代入表达式,可求出,利用错位相减的方法求出.
(1)设数列{an}的公比为q,
由题意知:2(a3+2)=a2+a4,
∴q3-2q2+q-2=0,即(q-2)(q2+1)=0.
∴q=2,即an=2·2n-1=2n.
(2)bn=n·2n,
∴Sn=1·2+2·22+3·23+…+n·2n.①
2Sn=1·22+2·23+3·24+…+(n-1)·2n+n·2n+1.②
①-②得-Sn=21+22+23+24+…+2n-n·2n+1
=-2-(n-1)·2n+1.
∴Sn=2+(n-1)·2n+1.
科目:高中数学 来源: 题型:
【题目】2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台套设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级。最近北斗三号工程耗资9万元建成一小型设备,已知这台设备从启用的第一天起连续使用,第天的维修保养费为元,使用它直至“报废最合算”(所谓“报废最合算”是指使用这台仪器的平均每天耗资最少)为止,一共使用了多少天,平均每天耗资多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是 (t为参数),l与C交于A、B两点,∣AB∣= ,求l的斜率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移 个单位后得到g(x)的图象,且y=g(x)在区间[]内的最小值为 .
(1)求m的值;
(2)在锐角△ABC中,若g( )=,求sinA+cosB的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】铜仁市某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
K2=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,(,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.
(1)求的解析式,对称轴及对称中心.
(2)该图象可以由的图象经过怎样的变化得到.
(3)当,求的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD= ,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com