精英家教网 > 高中数学 > 题目详情

【题目】已知点,过点且与轴垂直的直线为 轴,交于点,直线垂直平分,交于点.

(1)求点的轨迹方程;

(2)记点的轨迹为曲线,直线与曲线交于不同两点,且为常数),直线平行,且与曲线相切,切点为,试问的面积是否为定值.若为定值,求出的面积;若不是定值,说明理由.

【答案】12的面积为定值.

【解析】试题分析

1)根据抛物线的定义可得点M的轨迹根据待定系数法可得轨迹方程.(2设直线的方程为与抛物线方程联立消元后可得中点同样设出切线方程与抛物线方程联立消元后可得切点的坐标为故得 轴.于是,由此通过计算可证得的面积为定值.

试题解析

1)由题意得

即动点到点的距离和到直线的距离相等,

所以点的轨迹是以为焦点,直线为准线的抛物线,

根据抛物线定义可知点轨迹方程为

2)由题意知,直线的斜率存在,设其方程为

消去x整理得

的中点为,

则点

由条件设切线方程为

消去y整理得

直线与抛物线相切,

∴切点的横坐标为

为常数,

的面积为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,梯形中, 中点.将沿翻折到的位置,使,如图2.

)求证:平面与平面

)求直线与平面所成角的正弦值;

)设分别为的中点,试比较三棱锥和三棱锥(图中未画出)的体积大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某课外实习作业小组调查了1000名职场人士,就入职两家公司的意愿做了统计,得到如下数据分布:

(1)请分别计算40岁以上(含40岁)与40岁以下全体中选择甲公司的频率(保留两位小数),根据计算结果,你能初步得出什么结论?

(2)若分析选择意愿与年龄这两个分类变量,计算得到的的观测值为,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知经过两点的圆半径小于5,且在轴上截得的线段长为.

(1)求圆的方程;

(2)已知直线,若与圆交于两点,且以线段为直径的圆经过坐标原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

(1)能否由的把握认为参加书法社团和参加演讲社团有关?

(附:

时,有的把握说事件有关;当,认为事件是无关的)

(2)已知既参加书法社团又参加演讲社团的名同学中,有名男同学, 名女同学.现从这名男同学和名女同学中选人参加综合素质大赛,求被选中的男生人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图在空间直角坐标系正四面体(各条棱均相等的三棱锥)的顶点分别在 轴上.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知mn∈Rf(x)=|xm|+|2xn|.

(1)当mn=1时,求f(x)的最小值;

(2)若f(x)的最小值为2,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)通过()中的方程,求出y关于x的回归方程;

(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程其中

查看答案和解析>>

同步练习册答案