精英家教网 > 高中数学 > 题目详情

【题目】如图1,梯形中, 中点.将沿翻折到的位置,使,如图2.

)求证:平面与平面

)求直线与平面所成角的正弦值;

)设分别为的中点,试比较三棱锥和三棱锥(图中未画出)的体积大小,并说明理由.

【答案】见解析见解析

【解析】试题分析:(1)由题意易知: 所以平面,从而得证;(2)建立空间坐标系,平面的法向量为,代入公式即可求得;(3)利用向量法证明平面,所以三棱锥和三棱锥的体积大小相同.

试题解析:

(Ⅰ)证明:因为 平面

所以平面

因为平面,所以平面平面

(Ⅱ)解:在平面内作

平面,建系如图.

.,

设平面的法向量为,则

,即

得,

所以是平面的一个法向量.

,

所以与平面所成角的正弦值为.

(Ⅲ)解:三棱锥和三棱锥的体积相等.

理由如:由

,则

因为平面,所以平面

故点到平面的距离相等,有三棱锥同底等高,

所以体积相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆)与直线相切,设点为圆上一动点,轴于,且动点满足,设动点的轨迹为曲线

(1)求曲线的方程;

(2)直线与直线垂直且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).

(1)将曲线的极坐标方程化为直角坐标方程;

(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误的是( )

A. 使得为等腰三角形的点有且仅有4个

B. 使得为直角三角形的点有且仅有4个

C. 使得的点有且仅有4个

D. 使得的点有且仅有4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求曲线在点处的切线方程;

)求证:“”是“函数有且只有一个零点” 的充分必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式(其中.

1)当时,求不等式的解集;

2)若不等式在内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某购物网站对在7座城市的线下体验店的广告费指出(万元)和销售额(万元)的数据统计如下表:

城市

广告费支出

销售额

(Ⅰ)若用线性回归模型拟合关系,求关于的线性回归方程;

(Ⅱ)若用对数函数回归模型拟合的关系,可得回归方程,经计算对数函数回归模型的相关系数约为,请说明选择哪个回归模型更合适,并用此模型预测城市的广告费用支出万元时的销售额.

参考数据: .

参考公式: .

相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,则的值域是______;若的值域是,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,过点且与轴垂直的直线为 轴,交于点,直线垂直平分,交于点.

(1)求点的轨迹方程;

(2)记点的轨迹为曲线,直线与曲线交于不同两点,且为常数),直线平行,且与曲线相切,切点为,试问的面积是否为定值.若为定值,求出的面积;若不是定值,说明理由.

查看答案和解析>>

同步练习册答案