【题目】已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
、
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
、
两点.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当四边形
面积取最大值时,求
的值.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系.曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数)
(1)求曲线
的直角坐标方程及曲线
的极坐标方程;
(2)当
(
)时在曲线
上对应的点为
,若
的面积为
,求
点的极坐标,并判断
是否在曲线
上(其中点
为半圆的圆心)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,过点
且与
轴垂直的直线为
,
轴,交
于点
,直线
垂直平分
,交
于点
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,直线
与曲线
交于不同两点
,且
(
为常数),直线
与
平行,且与曲线
相切,切点为
,试问
的面积是否为定值.若为定值,求出
的面积;若不是定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的首项为
,公差为
,等比数列
的首项为
,公比为
.
(Ⅰ)若数列
的前
项和
,求
,
的值;
(Ⅱ)若
,
,且
.
(i)求
的值;
(ii)对于数列
和
,满足关系式
,
为常数,且
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018河南安阳市高三一模】如下图,在平面直角坐标系
中,直线
与直线
之间的阴影部分即为
,区域
中动点
到
的距离之积为1.
![]()
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)动直线
穿过区域
,分别交直线
于
两点,若直线
与轨迹
有且只有一个公共点,求证:
的面积恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=
x上时,求直线AB的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来,北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收入快速增长,人民生活品质不断提升.下图是北京市2012-2016年城乡居民人均可支配收入实际增速趋势图(例如2012年,北京城镇居民收入实际增速为
,农村居民收入实际增速为
).
![]()
(1)从2012-2016五年中任选一年,求城镇居民收入实际增速大于
的概率;
(2)从2012-2016五年中任选两年,求至少有一年农村和城镇居民收入实际增速均超过
的概率;
(3)由图判断,从哪年开始连续三年农村居民收入实际增速方差最大?(结论不要求证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com