精英家教网 > 高中数学 > 题目详情
(1)已知f(x)=-3x2+a(6-a)x+b.当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值.
(2)已知集合A={x|x2-x-6>0},B={x|0<x+a<4},若A∩B=∅,求实数a的取值范围.
分析:(1)由不等式的解集得到不等式所对应方程的两根,然后利用根与系数的关系列式求解a,b的值;
(2)分别求解二次不等式和一次不等式化简集合A与B,然后根据A∩B=∅利用端点值的关系列不等式组求解a的取值范围.
解答:解:(1)由f(x)=-3x2+a(6-a)x+b,且不等式f(x)>0的解集为(-1,3),
得-1,3为方程-3x2+a(6-a)x+b=0的两个根,
a(6-a)
3
=2
-
b
3
=-3
,解得a=3±
3
,b=9;
(2)由A={x|x2-x-6>0}={x|x<-2或x>3},
B={x|0<x+a<4}={x|-a<x<4-a},
若A∩B=∅,则
-a≥-2
4-a≤3
,解得1≤a≤2.
所以实数a的取值范围是[1,2].
点评:本题考查了不等式的解法,考查了交集及其运算,解答的关键是对端点值的取舍,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为x∈R且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,那么,当x>1时,f(x)的递减区间是(  )
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(2)已知f(x)满足2f(x)+f(
1x
)=3x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知f(x)+2f(
1
x
)=3x
,则函数g(x)=f(2x)在(0,1)上有唯一零点;
②对于函数f(x)=x
1
2
的定义域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),则必有0<f(b)<1;
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0.则函数f(x)、g(x)都是奇函数.
其中正确命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)满足下面两个条件,求a的取值范围.
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=2+log4x(1≤x≤16),求函数g(x)=[f(x)]2+f(x2)的值域.
(2)若直线y=4a与y=|ax-2|(a>0且a≠1)的图象有两个公共点,求a的取值范围.

查看答案和解析>>

同步练习册答案