精英家教网 > 高中数学 > 题目详情

函数f(x)=x2-2x-3,x∈[0,m](m>0)的最大值为-3,最小值为-4,则实数m的取值范围是


  1. A.
    (0,1]
  2. B.
    [1,2]
  3. C.
    [2,+∞)
  4. D.
    (0,2]
B
分析:先求出函数f(x)的最小,正好为了说明了[0,m]包含对称轴,当x=0时,y=-3,根据对称性可知当x=2时,y=-3,结合二次函数的图象可求出m的范围.
解答:∵函数f(x)=x2-2x-3是开口向上的抛物线,对称轴为 x=1,
当 x=1时函数取得最小值 f(1)=1-2-3=-4.
∵y=x2-2x+3在[0,m]上最小值为-4,∴m≥1.
当x=0时,y=-3,x=2时,y=-3.而且函数y=x2-2x+3在(1,+∞)上是增函数,
∵函数y=x2-2x+3在[0,m]上最大值为-3,∴m≤2.
综上所述 1≤m≤2,
故选 B.
点评:二次函数是最常见的函数模型之一,也是最熟悉的函数模型,解决此类问题要充分利用二次函数的性质和图象,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案