精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若A=$\frac{3π}{4}$,AB=6,AC=3$\sqrt{2}$,点D在BC的边上且AD=BD,则AD=$\sqrt{10}$.

分析 由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.

解答 解:∵A=$\frac{3π}{4}$,AB=6,AC=3$\sqrt{2}$,
∴在△ABC中,由余弦定理可得:BC2=AB2+AC2-2AB•ACcos∠BAC=90.
∴BC=3$\sqrt{10}$,…4分
∵在△ABC中,由正弦定理可得:$\frac{AC}{sinB}$=$\frac{BC}{sin∠BAC}$,
∴sinB=$\frac{\sqrt{10}}{10}$,
∴cosB=$\frac{3\sqrt{10}}{10}$,…8分
∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,
∴Rt△ADE中,AD=$\frac{AE}{cos∠DAE}$=$\frac{3}{cosB}$=$\sqrt{10}$.
故答案为:$\sqrt{10}$.…12分

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在底面半径为1,高为2的圆柱内随机取一点P,则点P到圆柱下底面的圆心的距离大于1的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为零的等差数列{an}的首项a1=2,其前n项和为Sn,且a1,a2,a4成等比数列.其中n∈N*.
(1)求数列{an}的通项公式及{an•(-3)n}的前2n项和T2n
(2)设bn=$\frac{{S}_{n}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n}}$,数列{bn}的前n项和为Pn,求Pn,并证明Pn<an+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,内角A,B,C所对的边分别为a,b,c,若b2+c2=2,则△ABC的面积的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图是函数性质的知识结构图,在处应填入(  )
A.图象变换B.对称性C.奇偶性D.解析式

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在空间直角坐标系中,已知A(2,4,3),B(1,3,2),则|AB|=(  )
A.3B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.近年来我国电子商务行业迎来蓬勃发展的新机遇,网购成了大众购物的一个重要组成部分,可人们在开心购物的同时,假冒伪劣产品也在各大购物网站频频出现,为了让顾客能够在网上买到货真价实的好东西,各大购物平台也推出了对商品和服务的评价体系,现从某购物网站的评价系统中选出100次成功的交易,并对其评价进行统计,对商品的好评率为$\frac{3}{5}$,对服务的好评率为$\frac{2}{5}$,其中对商品和服务都做出好评的交易为30次.
(1)列出关于商品和服务评价的2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这100次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=ln(2x-1)+$\frac{1}{\sqrt{2-{x}^{2}}}$的定义域为(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2|x+a|-|x-1|(a>0).
(1)若函数f(x)与x轴围成的三角形面积的最小值为4,求实数a的取值范围;
(2)对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案