精英家教网 > 高中数学 > 题目详情
设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.
分析:把等式看成关于a,b的直线方程:(x2-1)a+2xb+x-2=0,根据直线上一点(a,b)到原点的距离大于等于原点到直线的距离,得一不等式,对式子进行恰当变形后,利用函数的单调性可求得a2+b2的最小值.
解答:解:把等式看成关于a,b的直线方程:(x2-1)a+2xb+x-2=0,
由于直线上一点(a,b)到原点的距离大于等于原点到直线的距离,即
a2+b2
|x-2|
(x2-1)2+(2x)2

所以a2+b2≥(
x-2
1+x2
)2
=
1
(x-2+
5
x-2
+4)2
1
100

因为x-2+
5
x-2
在x∈[3,4]是减函数,上述式子在x=3,a=-
2
25
,b=-
3
50
时取等号,
故a2+b2的最小值为
1
100
点评:本题考查二次函数的性质、函数的单调性及不等式知识,考查学生灵活运用知识解决问题的能力,能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c满足f(-1)=0,对于任意的实数x都有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求证:a>0,c>0;
(3)当x∈(-1,1)时,函数g(x)=f(x)-mx,m∈R是单调的,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2
1
a
,且函数f(x)的图象关于直线x=x0对称,则有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足:当x=1时,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在实数m,n,使x∈[m,n]时,函数的值域也是[m,n]?若存在,则求出这样的实数m,n;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+x+a(a>0),若f(m)<0,则有(  )

查看答案和解析>>

同步练习册答案