精英家教网 > 高中数学 > 题目详情
设二次函数f(x)=ax2+bx+c满足f(-1)=0,对于任意的实数x都有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求证:a>0,c>0;
(3)当x∈(-1,1)时,函数g(x)=f(x)-mx,m∈R是单调的,求m的取值范围.
分析:(1)由f(x)≤(
x+1
2
)
2
可得 f(1)≤1,由f(x)-x≥0可得 f(1)≥1,故有(1)=1.
(2)f(x)-x≥0恒成立,可得a>0,且f(0)-0≥0 恒成立,从而得到c≥0.
(3)由题意得,g(x)的对称轴在区间(-1,1)的左边或右边,即 
m-a-c
2a
≤-1,或
m-a-c
2a
≥1,解出m的取值范围.
解答:解:(1)∵二次函数f(x)=ax2+bx+c满足f(-1)=0,∴a+c=b,函数f(x)=ax2+(a+c)x+c.
∵当x∈(0,2)时,f(x)≤(
x+1
2
)
2
,∴f(1)≤1.
又对于任意的实数x都有f(x)-x≥0,∴f(1)-1≥0,f(1)≥1,故 f(1)=1.
(2)由题意得,f(x)-x=ax2+(a+c-1)x+c≥0恒成立,∴a>0,且f(0)-0≥0 恒成立,
∴c≥0.
综上,a>0,c≥0.
(3)∵g(x)=f(x)-mx=ax2+(a+c-m)x+c,当x∈(-1,1)时,g(x)是单调的,
m-a-c
2a
≤-1,或
m-a-c
2a
≥1,∴m≤c-a,或 m≥3a+c,
故m的取值范围为(-∞,c-a]∪[3a+c,+∞).
点评:本题考查二次函数的性质,解分式不等式,正确使用题中条件是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2
1
a
,且函数f(x)的图象关于直线x=x0对称,则有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足:当x=1时,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在实数m,n,使x∈[m,n]时,函数的值域也是[m,n]?若存在,则求出这样的实数m,n;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+x+a(a>0),若f(m)<0,则有(  )

查看答案和解析>>

同步练习册答案