精英家教网 > 高中数学 > 题目详情
19.直线2x-y+c=0与圆(x-1)2+(y+1)2=6交于A,B两点,若以AB为直径的圆过原点,求c的值.

分析 将直线方程代入圆的方程,利用韦达定理,及以AB为直径的圆过原点,可得关于c的方程,即可求解,注意方程判别式的验证.

解答 解:由直线2x-y+c=0与圆(x-1)2+(y+1)2=6,消去y,得5x2+(2+4c)x+c2+2c-4=0①…(4分)
设直线l和圆C的交点为A (x1,y1),B(x2,y2),则x1、x2是①的两个根.
∴x1x2=$\frac{{c}^{2}+2c-4}{5}$,x1+x2=-$\frac{2+4c}{5}$.②…(8分)
由题意有:OA⊥OB,即x1x2+y1y2=0,
∴x1x2+(2x1+c)(2x2+c)=0,即5x1x2+2c(x1+x2)+c2=0③
将②代入③得:c2+3c-10=0. …(12分)
解得:c=2或c=-5,
c=2时,方程为5x2+10x+4=0,判别式△=100-80>0,满足题意
c=-5时,方程为5x2-18x-11=0,判别式△>0,满足题意
所以满足条件的c为:c=2或c=-5.…(14分)

点评 本题综合考查直线与圆的位置关系,考查向量知识的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知Rt△ABC中,∠C=90°,AC=3,BC=4,则$\overrightarrow{AB}$$•\overrightarrow{AC}$+$\overrightarrow{AC}$$•\overrightarrow{BC}$+$\overrightarrow{BC}•\overrightarrow{AB}$=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列不等式中与x<1同解的是(  )
A.-2x>-2B.mx>mC.x2(x-1)>0D.(x+1)2(1-x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知由整数组成的数列{an}各项均不为0,其前n项和为Sn,且a1=a,2Sn=anan+1
(1)求a2的值;
(2)求{an}的通项公式;
(3)若n=15时,Sn取得最小值,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f1(x)=1-ax,f2(x)=(1-a)x-1.符号max{m,n}表示m,n两数中较大的数.
(1)设f(x)=max{f1(x),f2(x)},试求分段函数f(x)的解析式;
(2)记(1)所求函数f(x)在闭区间[1,3]内的最大值与最小值之差为h(a),试求关于a的函数h(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)={x^3}+{x^{-1}}-{x^{\frac{1}{2}}}$的奇偶性为(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设m、n为实数,若m+n=2,则3m+3n的最小值为(  )
A.18B.6C.2$\sqrt{3}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a>0且a≠1,在同一坐标系中,y=ax,y=logax的图象只能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,a1=1,a2+a3=2,且an+3-an=1,n∈N*
(1)求S3n
(2)求$\frac{1}{{S}_{3}}$+$\frac{1}{{S}_{6}}$+…+$\frac{1}{{S}_{3n}}$.

查看答案和解析>>

同步练习册答案