精英家教网 > 高中数学 > 题目详情
18.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
第一组:${f_1}(x)=sinx,\;\;{f_2}(x)=cosx,\;\;h(x)=sin(x+\frac{π}{3})$;
第二组:${f_1}(x)={x^2}-x\;,\;{f_2}(x)={x^2}+x+1\;,\;\;h(x)={x^2}-x+1$;
(2)设${f_1}(x)={log_2}x,{f_2}(x)={log_{\frac{1}{2}}}x,a=2,b=1$,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围.

分析 (1)由条件利用生成函数的定义,判断h(x)是否分别为f1(x),f2(x)的生成函数,从而得出结论.
(2)由题意可得不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,等价于$t<-3{h^2}(x)-2h(x)=-3log_2^2x-2{log_2}x$ 在[2,4]上有解.令s=log2x,则s∈[1,2],由$y=-3log_2^2x-2{log_2}x=-3{s^2}-2s$,求得y的最小值,可得t的范围.

解答 解:(1)①设$asinx+bcosx=sin(x+\frac{π}{3})$,即$asinx+bcosx=\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx$,
取$a=\frac{1}{2},\;\;b=\frac{{\sqrt{3}}}{2}$,所以h(x)是f1(x),f2(x)的生成函数.
②设a(x2-x)+b(x2+x+1)=x2-x+1,即(a+b)x2-(a-b)x+b=x2-x+1,
则$\left\{\begin{array}{l}a+b=1\\-a+b=-1\\ b=1\end{array}\right.$,该方程组无解.所以h(x)不是f1(x),f2(x)的生成函数.
(2)因为${f_1}(x)={log_2}x,{f_2}(x)={log_{\frac{1}{2}}}x,a=2,b=1$,
所以 $h(x)=2{f_1}(x)+{f_2}(x)=2{log_2}x+{log_{\frac{1}{2}}}x={log_2}x$,
不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,
等价于$t<-3{h^2}(x)-2h(x)=-3log_2^2x-2{log_2}x$ 在[2,4]上有解,
令s=log2x,则s∈[1,2],由$y=-3log_2^2x-2{log_2}x=-3{s^2}-2s$,
知y取得最小值-5,所以t<-5.

点评 本题主要考查新定义,两角和差的正弦函数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知a>0,b>0,记m是$\frac{1}{a}$,$\frac{1}{b}$,a2+b2-1三者中的最大值,则m的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.a、b、c∈R且ab>0,则下面推理中正确的是(  )
A.a>b⇒am2>bm2B.$\frac{a}{c}$>$\frac{b}{c}$⇒a>bC.a3>b3⇒$\frac{1}{a}$<$\frac{1}{b}$D.a2<b2⇒a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x、y满足约束条件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为10,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.$\frac{24}{5}$B.5C.25D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an},Sn是其前n项的且满足$3{a_n}=2{S_n}+n(n∈{N^*})$
(I)求证:数列$\left\{{{a_n}+\frac{1}{2}}\right\}$为等比数列;
(Ⅱ)记{(-1)nSn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合M={x|x2+2x-3=0},N={-1,2,3},则M∪N=(  )
A.{-1,3}B.{-1,1,3}C.{-1,1,2,-3,3}D.{-1,1,-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求值:2log2${\;}^{\sqrt{2}}$-lg2-lg5+$\frac{1}{{\root{3}{{{{({\frac{27}{8}})}^2}}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=${∫}_{0}^{\frac{π}{2}}$$\frac{cosx}{2}$dx,则(ax-$\frac{1}{2ax}$)9的展开式中,关于x的一次项的系数为(  )
A.$\frac{63}{16}$B.-$\frac{63}{16}$C.$\frac{63}{8}$D.-$\frac{63}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,直线l的参数方程为:$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{\sqrt{2}}{2}t}\\{y=2-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{3}$cosθ
(1)求曲线C的直角坐标方程;
(2)设曲线C与直线l交于A,B两点,求|AB|的长.

查看答案和解析>>

同步练习册答案