| A. | $\frac{63}{16}$ | B. | -$\frac{63}{16}$ | C. | $\frac{63}{8}$ | D. | -$\frac{63}{8}$ |
分析 根据定积分求出a的值,再利用二项式展开式的通项公式,求出展开式中关于x的一次项系数即可.
解答 解:∵a=${∫}_{0}^{\frac{π}{2}}$$\frac{cosx}{2}$dx=$\frac{1}{2}$${sinx|}_{0}^{\frac{π}{2}}$=$\frac{1}{2}$(sin$\frac{π}{2}$-sin0)=$\frac{1}{2}$,
∴(ax-$\frac{1}{2ax}$)9=${(\frac{x}{2}-\frac{1}{x})}^{9}$,
其展开式中,通项公式为
Tr+1=${C}_{9}^{r}$•${(\frac{x}{2})}^{9-r}$•${(-\frac{1}{x})}^{r}$=(-1)r•${C}_{9}^{r}$•${(\frac{1}{2})}^{9-r}$•x9-2r;
令9-2r=1,解得r=4;
∴T4+1=${C}_{9}^{4}$•${(\frac{1}{2})}^{5}$x=$\frac{63}{16}$x,
即展开式中关于x的一次项系数为$\frac{63}{16}$.
点评 本题考查了定积分的计算问题,也考查了二项式定理的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1) | B. | [-1,4] | C. | [0,4) | D. | [-1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{5}$,$\frac{1}{5}$) | B. | (-$\frac{2}{5}$,$\frac{1}{5}$) | C. | (-$\frac{3}{5}$,-$\frac{2}{5}$) | D. | (-$\frac{1}{5}$,$\frac{1}{5}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com