精英家教网 > 高中数学 > 题目详情
11.如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线与AE、BE分别交于点C、D,其中∠AEB=30°.
(1)求证:$\frac{ED}{BD}.\frac{PB}{PA}=\frac{PD}{PC}$
(2)求∠PCE的大小.

分析 (1)证明△PED∽△PAC,结合角平分线的性质,即可证明结论;
(2)利用PE是圆的切线,可得∠PEB=∠PAC,利用AE是∠APE的平分线,可得∠EPC=∠APC,根据三角形的外角与内角关系,可得∠EDC=∠ECD,即可得出结论.

解答 (1)证明:∵PE是圆的切线,∴∠PEB=∠PAC,
∵AE是∠APE的平分线,∴∠EPC=∠APC,
∴△PED∽△PAC,
∴$\frac{PE}{PA}$=$\frac{PD}{PC}$,
∵$\frac{PE}{PB}$=$\frac{ED}{BD}$,
∴$\frac{ED}{BD}.\frac{PB}{PA}=\frac{PD}{PC}$;
(2)解:∵PE是圆的切线,∴∠PEB=∠PAC,
∵AE是∠APE的平分线,∴∠EPC=∠APC,
根据三角形的外角与内角关系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,
∴∠EDC=∠ECD,∴△EDC为等腰三角形,
又∠AEB=30°,
∴∠EDC=∠ECD=75°,即∠PCE=75°,

点评 本题考查三角形相似的判定与性质,考查角平分线性质,圆的切线的性质,考查等腰三角形的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sinx+$\sqrt{3}$cosx,当x∈[0,π]时,f(x)≥1的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.P2P金融又叫P2P信贷,是互联网金融(1TF1N)的一种,某P2P平台需要了解该平台“理财者”的年龄情况,工作人员从该平台“理财者”中随机抽取n人进行调查,将调查数据整理成如表统计表和如图频率分布直方图.
 组数 分组 频数
 第一组[20,25) 2
 第二组[25,30) a
 第三组[30,35) b
 第四组[35,40) c
 第五组[40,45) d
 第六组[45,50] e
(Ⅰ)求a,b,c,d,e的值;
(Ⅱ)补全频率分布直方图;
(Ⅲ)从[20,30)岁年龄段的“理财者”中随机抽取2人,求这2人都来自于[25,30)岁年龄段的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈[0,1)}\\{4-2x,x∈[1,2]}\end{array}\right.$,若x0∈[0,1),且f[f(x0)]∈[0,1),则x0的取值范围是(  )
A.(log2$\frac{3}{2}$,1)B.(log2$\frac{2}{3}$,1)C.($\frac{2}{3}$,1)D.[0,$\frac{3}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为$\sqrt{5}$的等腰三角形.
(Ⅰ)求二面角P-AB-C的大小;
(Ⅱ)在线段AB上是否存在一点E,使平面PCE⊥平面PCD?若存在,请指出点E的位置并证明,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a\sqrt{x}-\frac{x^2}{e^x}({x>0})$,其中e为自然对数的底数.
(Ⅰ)当a=0时,判断函数y=f(x)极值点的个数;
(Ⅱ)若函数有两个零点x1,x2(x1<x2),设$t=\frac{x_2}{x_1}$,证明:x1+x2随着t的增大而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图随时,AB是⊙O的直径,C,D是⊙O上的两点,OC⊥AD.过点B作⊙O的切线PB交AD的延长线于点P,连接BC交AD于点E.
(1)求证:PE2=PD•PA;
(2)若AB=PB,求△CDE与△ABE面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在区间(0,+∞)上的函数f(x)满足f(x)>0,且$\frac{2f(x)}{x}$<f′(x)$<\frac{3f(x)}{x}$(其中f′(x)是f(x)的导函数)恒成立,则(  )
A.$\frac{1}{3}$$<\frac{f(2)}{f(4)}$$<\frac{1}{2}$B.$\frac{1}{4}<\frac{f(2)}{f(4)}$$<\frac{1}{3}$C.$\frac{1}{8}$$<\frac{f(2)}{f(4)}$$<\frac{1}{4}$D.$\frac{1}{16}$$<\frac{f(2)}{f(4)}$$<\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知菱形ABCD,P为ABCD外一点,且PA⊥平面ABCD,AB=4,∠DAB=120°,PA=3.求:二面角P-BD-A的正弦值.

查看答案和解析>>

同步练习册答案