精英家教网 > 高中数学 > 题目详情
如图是正方体的平面展开图,在这个正方体中,以下四个命题:
(1)BM与ED平行;
(2)CN与BE是异面直线;
(3)CN与BM成60°;
(4)CN与AF垂直.
其中正确的有
 
考点:异面直线的判定
专题:空间位置关系与距离
分析:由展开图复原正方体如图所示.利用正方体的性质即可判断出.
解答: 解:由展开图复原正方体如图所示.
由正方体可得:BM与ED是异面直线,CN∥BE,CN与BM是异面直线,CN∥BE可得CN⊥AF.
综上可得:只有(3)(4)正确.
故答案为:(3)(4).
点评:本题考查了正方体的表面对角线的位置关系,平面展开图复原几何体是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点P(x,y),其中x,y∈N,则满足x+y≤3的点P的个数为(  )
A、10B、9C、3D、无数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,直线y=x+
2
与以原点为圆心、椭圆C的短半轴长为半径的圆O相切.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,求证:2m-k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(a+i)(2+i)是纯虚数(i是虚数单位),则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程
x2
a2
+
y2
b2
=1
表示焦点在x轴上且离心率小于
3
2
的椭圆的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,1]上随机地任取两个数a,b,则满足a2+b2
1
4
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=sinxcosx-cos2x,给出下列命题:
①f(x)的最小正周期为2π;
②f(x)在区间(0,
π
8
)
上为增函数;
③直线x=
8
是函数f(x)图象的一条对称轴;
④函数f(x)的图象可由函数f(x)=
2
2
sin2x
的图象向右平移
π
8
个单位得到;
⑤对任意x∈R,恒有f(
π
4
+x)+f(-x)=-1

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,4]内随机取两个实数a,b,则使得方程x2+ax+b2=0有实根的概率是(  )
A、
1
4
B、
1
3
C、
1
6
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax+1(a∈R).
(Ⅰ)若a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=2x-1,若存在x1∈(0,+∞),对于任意x2∈[0,1],使f(x1)≥g(x2),求a的取值范围.

查看答案和解析>>

同步练习册答案