精英家教网 > 高中数学 > 题目详情
18.已知a=$\int_0^{\frac{π}{6}}$cosxdx,则x(x-$\frac{1}{ax}$)7的展开式中的常数项是-128.(用数字作答)

分析 利用微积分基本定理可得a,再利用二项式定理的通项公式即可得出.

解答 解:a=$\int_0^{\frac{π}{6}}$cosxdx=$sinx{|}_{0}^{\frac{π}{6}}$=$\frac{1}{2}$,
则x$(x-\frac{2}{x})^{7}$的展开式中的通项公式:Tr+1=x${∁}_{7}^{r}{x}^{7-r}(-\frac{2}{x})^{r}$=(-2)r${∁}_{7}^{r}$x7-r
令7-r=0,解得r=7.
∴常数项=-${2}^{7}•{∁}_{7}^{7}$=-128.
故答案为:-128.

点评 本题考查了微积分基本定理、二项式定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.计算:
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;   
(2)$\frac{lg2+lg5-lg8}{lg50-lg40}$+log${\;}_{\sqrt{2}}$$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上时增函数,则(  )
A.f(-1)<f(3)<f(4)B.f(4)<f(3)<f(-1)C.C.f(3)<f(4)<f(-1)D.f(-1)<f(4)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ax+b}{1+{x}^{2}}$的定义域为(-1,1),满足f(-x)=-f(x),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(1)求函数f(x)的解析式;
(2)证明f(x)在(-1,1)上是增函数;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x|x>1},B={x|-1≤x≤1},则A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图的程序框图表示的算法的功能是(  )
A.计算小于100的奇数的连乘积
B.计算从1开始的连续奇数的连乘积
C.从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数
D.计算1×3×5×…×n≥100时的最小的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中是假命题的是(  )
A.?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是幂函数,且在(0,+∞)上递减
B.函数$f(x)=lg[{{x^2}+({a+1})x-a+\frac{1}{4}}]$的值域为R,则a≤-6或a≥0
C.关于x的方程ax2+2x+1=0至少有一个负根的弃要条件是a≤1
D.函数y=f(a+x)与函数y=f(a-x)的图象关于直线x=a对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|3<x<7},B={x|2<x<10},C={x|5-a<x<a}.
(1)求(∁RA)∩B;
(2)若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的顶点A的坐标为(1,2),AB边上的中线CM所在直线的方程为x-2y-5=0,AC边上的高BH所在直线的方程为2x-y-5=0,求AC边的长.

查看答案和解析>>

同步练习册答案