精英家教网 > 高中数学 > 题目详情
10.函数f(x)=log2(x2-1)的单调减区间为(-∞,-1).

分析 由对数式的真数大于0,求出函数的定义域,再求出内函数t=x2-1的减区间得答案.

解答 解:由x2-1>0,得x<-1或x>1.
令t=x2-1,则y=log2t,
内函数t=x2-1,在(-∞,-1)上为减函数,外函数y=log2t是定义域内的增函数,
∴函数f(x)=log2(x2-1)的单调减区间为:(-∞,-1).
故答案为:(-∞,-1).

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知f(x)=$\left\{\begin{array}{l}(6-a)x-4a\\{log_a}x\end{array}\right.\begin{array}{l}(x<1)\\(x≥1)\end{array}$满足[f(x1)-f(x2)](x1-x2)>0对任意定义域中的x1,x2成立,则实数a的取值范围是$[\frac{6}{5},6)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知(x+a)7的展开式中x4的系数为-35,则a为(  )
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x+k)ex(k∈R).
(1)求f(x)的极值;
(2)求f(x)在x∈[0,3]上的最小值.
(3)设g(x)=f(x)+f'(x),若对?k∈[-$\frac{7}{2}$,-$\frac{3}{2}}$]及?x∈[0,2]有g(x)≥λ恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={-2,1,3,6},B={x|-2<x<4},则A∩B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=kax-a-x(a>0)且a≠0)是奇函数.
(1)求k的值;
(2)若f(1)>0,解关于x的不等式f(x+2)+f(x-4)>0
(3)若f(1)=$\frac{3}{2}$且对任意的x∈[1,+∞),不等式a2x+a-2x-2mf(x)+2≥0恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}前n项的和为Sn,且满足a1=23,a2=-9,an+2=an+6×(-1)n+1-2.n∈N*
(1)求数列{an}的通项公式;
(2)求当Sn最大时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2${cos^2}x+sin({\frac{7π}{6}-2x})-1({x∈R})$;
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数f(x)的图象经过点$({A,\frac{1}{2}})$,若${\overrightarrow{AB}^2}-\overrightarrow{AC}•\overrightarrow{CB}-\overrightarrow{BC}$=4,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2x+2+1的图象过定点(  )
A.(1,2)B.(2,1)C.(-2,2)D.(-1,1)

查看答案和解析>>

同步练习册答案