精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2${cos^2}x+sin({\frac{7π}{6}-2x})-1({x∈R})$;
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数f(x)的图象经过点$({A,\frac{1}{2}})$,若${\overrightarrow{AB}^2}-\overrightarrow{AC}•\overrightarrow{CB}-\overrightarrow{BC}$=4,求a的最小值.

分析 (1)利用三角恒等变换,可化简f(x)=sin(2x+$\frac{π}{6}$),利用正弦函数的性质可求得函数f(x)的最小正周期及单调递增区间;
(2)由已知${\overrightarrow{AB}^2}-\overrightarrow{AC}•\overrightarrow{CB}-\overrightarrow{BC}$=4,化简整理可得bc=8,再由余弦定理a2=b2+c2-2bccosA结合不等式即可求得a的最小值.

解答 解:(1)$f(x)=2{cos^2}x+sin({\frac{7π}{6}-2x})-1=sin(2x+\frac{π}{6})$
因此,最小正周期为T=π…(3分),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$(k∈Z)得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$(k∈Z),
∴函数f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)…(5分)
(2)由题知:${\overrightarrow{AB}^2}-\overrightarrow{AC}•\overrightarrow{CB}-\overrightarrow{BC}$=c2+b2-bccosA-a2=2bccosA-bccosA=$\frac{1}{2}$bc=4,
∴bc=8,由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc=8,
∴a≥2$\sqrt{2}$,
∴a的最小值为2$\sqrt{2}$…(10分)

点评 本题考查三角恒等变换及其应用,考查向量的数量积、余弦定理与基本不等式的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知圆M:x2+y2+4x-2y+3=0,直线l过点P(-3,0),圆M的圆心坐标是(-2,1);若直线l与圆M相切,则切线在y轴上的截距是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=log2(x2-1)的单调减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.默写对数换底公式并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC$\stackrel{∥}{=}$$\frac{1}{2}$AD,BE$\stackrel{∥}{=}$$\frac{1}{2}$FA,M为FD的中点.
(1)证明:CM∥面ABEF;
(2)C,D,F,E四点是否共面?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,且f(2)=0,则不等式$\frac{2f(x)+f(-x)}{5x}$<0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列四种说法:
(1)函数y=ax(a>0,a≠1)与函数y=x2的定义域相同;
(2)函数y=2x与函数y=log3x互为反函数;
(3)函数y=log3(x2-2x-3)的单调增区间是[1,+∞);
(4)函数y=3|x|的值域为[1,+∞).
其中所有正确的序号是(1),(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图是一个多面体的实物图,在下列四组三视图中,正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线y2=2x上一点M到它的焦点F的距离为$\frac{5}{2}$,O为坐标原点,则△MFO的面积为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案