精英家教网 > 高中数学 > 题目详情
不等式|x+1|≥1的解集为(  )
分析:利用含绝对值不等式的解法即可得出.
解答:解:∵不等式|x+1|≥1,∴x+1≥1或x+1≤-1,解得x≥0或x≤-2.
∴不等式|x+1|≥1的解集是{x|x≥0或x≤-2}.
故选D.
点评:熟练掌握含绝对值不等式的解法的关键是通过分类讨论的思想方法去掉绝对值符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

使关于x的不等式|x+1|+k<x有解的实数k的取值范围是(  )
A、(-∞,-1)B、(-∞,1)C、(-1,+∞)D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

A是定义在[2,4]上且满足如下两个条件的函数Φ(x)组成的集合:
①对任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)设Φ(x)=
[
3]1+x,x∈[2,4]
,证明:Φ(x)∈A;
(2)设Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,这样的x0是唯一的;
(3)设Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
x-3
x-1
<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

使不等式|x-1|<2成立的充分不必要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(A)若不等式|x+1|-|x-4|≥a+
4
a
,对任意的x∈R恒成立,则实数a的取值范围是
(-∞,4]∪[-1,0)
(-∞,4]∪[-1,0)

(B)已知直线l:
x=a+2t
y=-1-t
(t为参数),圆C:ρ=2
2
cos(θ-
π
4
)(极轴与x轴的非负半轴重合,且单位长度相同),若直线l被圆C截得弦长为2,则a=
5
5

查看答案和解析>>

同步练习册答案