精英家教网 > 高中数学 > 题目详情
(2013•广州二模)如图,在三棱锥P-ABC中,∠PAB=∠PAC=∠ACB=90°.
(1)求证:平面PBC丄平面PAC
(2)已知PA=1,AB=2,当三棱锥P-ABC的体积 最大时,求BC的长.
分析:(1)由线线垂直证线面垂直,再由线面垂直证面面垂直即可;
(2)根据棱锥的体积公式,构造函数,通过求函数的最大值,求得三棱锥的体积的最大值及最大值时的条件.
解答:解:(1)证明:∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC,
∵AB∩AC=A,∴PA⊥平面ABC,
∵BC?平面ABC,∴BC⊥PA
∵∠ACB=90°,∴BC⊥CA,又PA∩CA=A,
∴BC⊥平面PAC,∵BC?平面PBC,
∴平面PBC⊥平面PAC.
(2)由(1)知:PA⊥平面ABC,BC⊥CA,
设BC=x(0<x<2),AC=
AB2-BC2
=
22-x2
=
4-x2

VP-ABC=
1
3
×S△ABC×PA=
1
6
x
4-x2
=
1
6
x2(4-x2)

1
6
×
x2+4-x2
2
=
1
3

当且仅当x=
2
时,取“=”,
故三棱锥P-ABC的体积最大为
1
3
,此时BC=
2
点评:本题考查面面垂直的判定及三棱锥的体积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广州二模)如果函数f(x)=ln(-2x+a)的定义域为(-∞,1),则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)(几何证明选讲选做题)
在△BC中,D是边AC的中点,点E在线段BD上,且满足BE=
1
3
BD,延长AE交 BC于点F,则
BF
FC
的值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)直线y=k(x+1)与圆(x+1)2+y2=1相交于A,B两点,则|AB|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)在等差数列{an}中,a1+a2=5,a3=7,记数列{
1anan+1
}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)是否存在正整数m、n,且1<m<n,使得S1、SntSn成等比数列?若存在,求出所有符合条件的m,n值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)设an是函数f(x)=x3+n2x-1(n∈N+)的零点.
(1)证明:0<an<1;
(2)证明:
n
n+1
a1+a2+…+an
3
2

查看答案和解析>>

同步练习册答案