精英家教网 > 高中数学 > 题目详情
已知一几何体的三视图如下,则这几何体的外接球的表面积为
 

精英家教网
分析:由图不难分析出棱锥的底面棱长和底面上的高,易得这是一个正四面体,根据正四面体的性质,我们不难得到其外接球的半径R,进而得到外接球的表面积.
解答:解:由三视图可知这几何体是棱长为2的正四面体,
它的外接球的直径是棱长为
2
的正方体的对角线
6

∴球的表面积为4πR2=6π.
故答案为:6π
点评:根据三视图判断空间几何体的形状,进而求几何的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知一几何体的三视图如图所示,则该几何体的体积为(  )
A、
19
3
3
π+40π
B、
13
3
3
π+40π
C、
19
3
3
π+40
D、
13
3
3
π+40

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一几何体的三视图如下,其中正视图,侧视图均为矩形,俯视图为等腰直角三角形,则该几何体的体积为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一几何体的三视图如图,主视图和左视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何形体可能是(  )
①矩形;
②有三个面为直角三角形,有一个面为等腰三角形的四面体;
③每个面都是直角三角形的四面体.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一几何体的三视图如图,主视图与左视图为全等的等腰直角三角形,直角边长为6,俯视图为正方形,(1)求点A到面SBC的距离;(2)有一个小正四棱柱内接于这个几何体,棱柱底面在面ABCD内,其余顶点在几何体的棱上,当棱柱的底面边长与高取何值时,棱柱的体积最大,并求出这个最大值.

查看答案和解析>>

同步练习册答案