分析 (1)由正弦定理及两角和的正弦公式可得sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A
(2)通过余弦定理以及基本不等式求出b+c的范围,再利用三角形三边的关系求出b+c的范围.
解答 解:(1)∵acosC+$\sqrt{3}$asinC-b-c=0,
∴sinAcosC+$\sqrt{3}$sinAsinC-sinB-sinC=0,
∴sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,
∵sinC≠0,
∴$\sqrt{3}$sinA-cosA=1,
∴sin(A-30°)=$\frac{1}{2}$,
∴A-30°=30°,
∴A=60°;
(2)由余弦定理得,a2=b2+c2-2bccosA,
则4=b2+c2-bc,
∴(b+c)2-3bc=4,
即3bc=(b+c)2-4≤3[$\frac{1}{2}$(b+c)]2,
化简得,(b+c)2≤16(当且仅当b=c时取等号),
则b+c≤4,又b+c>a=2,
综上得,b+c的取值范围是(2,4].
点评 本题综合考查了三角公式中的正弦定理、余弦定理、基本不等式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | h(t)=10t | B. | h(t)=log2t | C. | h(t)=t2 | D. | $h(t)=\frac{1}{t}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com