精英家教网 > 高中数学 > 题目详情
20.已知$f(x)=tan(2x+\frac{π}{3})$,若函数f(x+m)为奇函数,则最小正数m的值为$\frac{π}{3}$.

分析 利用正切函数是奇函数的性质,列出方程即可求得m的取值,再求出它的最小值.

解答 解:∵函数f(x)=tan(2x+$\frac{π}{3}$),
∴f(x+m)=tan(2x+2m+$\frac{π}{3}$);
又f(x+m)是奇函数,
∴2m+$\frac{π}{3}$=kπ,k∈Z;
当k=1时,m取得最小正数值为$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查了正切函数的图象与性质的应用问题,是基本题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),x∈R.
(1)在所给坐标系中用五点法作出它在区间[$\frac{π}{8}$,$\frac{9π}{8}$]上的图象.
(2)求f(x)的单调区间.
(3)说明f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的图象可由y=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若命题p:?x0∈R,使x02+(a-1)x0+1<0,则该命题的否定¬p为(  )
A.?x0∉R,使x02+(a-1)x0+1<0B.?x∈R,x2+(a-1)x+1<0
C.?x0∈R,使x02+(a-1)x0+1≥0D.?x∈R,x2+(a-1)x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设M=a+$\frac{1}{a-2}$(2<a<3),$N=x(4\sqrt{3}-3x)(0<x<\frac{{4\sqrt{3}}}{3})$,则M,N的大小关系为M>N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;       
(2)2$\sqrt{3}$×$\root{6}{12}$×$\root{3}{\frac{3}{2}}$
(3)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-c=0.
(Ⅰ)求A;
(Ⅱ)若a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)角α终边经过点P0(-3,-4),求sinα,cosα,tanα的值.
(2)已知角终边上一点$P(-\sqrt{3},m)({m≠0})$,且sinα=$\frac{{\sqrt{2}}}{4}$m,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)(lg2)2+lg2×lg50+lg25
(2)${({3^{{{log}_3}4}})^2}+({log_9}16)•({log_4}27)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列关系式中哪些是正确的(  )
①aman=amn,②(amn=(anm③loga(MN)=logaM+logaN
④loga(M-N)=logaM÷logaN.以上各式中a>0且a≠1,M>0,N>0.
A.①③B.②④C.②③D.①②③④

查看答案和解析>>

同步练习册答案