精英家教网 > 高中数学 > 题目详情

求过两点A(1,4)、B(3,2)且圆心在直线y=0上的圆的标准方程,并判断点P(2,4)与圆的关系.

 

圆的方程为(x+1)2+y2=20.点P在圆外

【解析】(解法1)(待定系数法)设圆的标准方程为(x-a)2+(y-b)2=r2.

∵圆心在y=0上,故b=0.∴圆的方程为(x-a)2+y2=r2.

∵该圆过A(1,4)、B(3,2)两点,∴解之得a=-1,r2=20.

∴所求圆的方程为(x+1)2+y2=20.

(解法2)(直接求出圆心坐标和半径)∵圆过A(1,4)、B(3,2)两点,∴圆心C必在线段AB的垂直平分线l上.∵kAB==-1,故l的斜率为1,又AB的中点为(2,3),故AB的垂直平分线l的方程为y-3=x-2即x-y+1=0.又知圆心在直线y=0上,故圆心坐标为C(-1,0).∴半径r=|AC|=.故所求圆的方程为(x+1)2+y2=20.又点P(2,4)到圆心C(-1,0)的距离为d=|PC|=>r.

∴点P在圆外.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为,点M的横坐标为.

(1)求椭圆C的标准方程;

(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

自点A(-3,3)发出的光线l射到x轴上,被x轴反射,反射光线所在的直线与圆C:x2+y2-4x-4y+7=0相切.求:

(1)光线l和反射光线所在的直线方程;

(2)光线自A到切点所经过的路程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连结BC并延长至D,使得CD=BC,求AC与OD的交点P的轨迹方程.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=PN,试建立适当的坐标系,并求动点P的轨迹方程.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:填空题

方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,.

(1) 求直线BD的方程;

(2) 求直线BD被过P、A、B三点的圆C截得的弦长;

(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:填空题

已知直线x+ay=2a+2与直线ax+y=a+1平行,则实数a的值为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.

(1)若点B的坐标为(0,2),求曲线E的方程;

(2)若a=b=1,求直线AB的方程.

 

查看答案和解析>>

同步练习册答案