精英家教网 > 高中数学 > 题目详情

【题目】某同学用“描点法”画函数在区间上的图象时,列表并填入了部分数据,如下表:

(1)请将上表数据补充完整,并在给出的直角坐标系中,画出在区间上的图象;

(2)利用函数的图象,直接写出函数上的单调递增区间;

(3)将图象上所有点向左平移个单位长度,得到的图象,若

图象的一个对称中心为,求的最小值.

【答案】(1)见解析(2) 单调递增区间为 (3)

【解析】试题分析:根据函数,将的不同值代入计算后,将的值即可填入表中,“描点法”画出图象即可利用单调递增区间对应的图象从左到右是上升趋势,可写出函数上的单调递增区间;先计算出,由对称中心得出结果

解析:(1)数据补全如下表

在区间上的图像如下图所示

(2)由函数的图象可得,函数上的单调递增区间为

(3)向左平移个单位得到

的一个对称中心

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.
(1)求k的取值范围;
(2)请问是否存在实数k使得 (其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.

平均车速超过
100km/h人数

平均车速不超过
100km/h人数

合计

男性驾驶员人数

女性驾驶员人数

合计


(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为 ,若每次抽取的结果是相互独立的,求 的分布列和数学期望.
参考公式与数据: ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,直线 的参数方程为 为参数).再以原点为极点,以 正半轴为极轴建立极坐标系,并使得它与直角坐标系 有相同的长度单位.在该极坐标系中圆 的方程为
(1)求圆 的直角坐标方程;
(2)设圆 与直线 交于点 ,若点 的坐标为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )
A.函数 的图象与直线 可能有两个交点;
B.函数 与函数 是同一函数;
C.对于 上的函数 ,若有 ,那么函数 内有零点;
D.对于指数函数 ( )与幂函数 ( ),总存在一个 ,当 时,就会有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程和相关系数r,分别得到以下四个结论:


其中,一定不正确的结论序号是( )
A.②③
B.①④
C.①②③
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 为线段上的动点,则下列判断错误的是( )

A. 平面 B. 平面

C. D. 三棱锥的体积与点位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A1,A2,A3;田忌的三匹马分别为B1,B2,B3;三匹马各比赛一次,胜两场者获胜,双方均不知对方的马出场顺序.

(1)若这六匹马比赛优、劣程度可以用不等式表示:A1>B1>A2>B2>A3>B3,则田忌获胜的概率是多大?

(2)若这六匹马比赛优、劣程度可以用不等式表示:A1>B1>A2>B2>B3>A3,则田忌获胜的概率是多大?

查看答案和解析>>

同步练习册答案