精英家教网 > 高中数学 > 题目详情

现有A,B两球队进行友谊比赛,设A队在每局比赛中获胜的概率都是
(Ⅰ)若比赛6局,求A队至多获胜4局的概率;
(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.

(Ⅰ);(Ⅱ)E(ξ)=.

解析试题分析:(Ⅰ)利用“正难则反”的思路来求;(Ⅱ)按照分布列的取值情况求对应的概率即可.
试题解析:(Ⅰ) 记“比赛6局,A队至多获胜4局”为事件A,
则P(A)=1-[()5(1-)+()6]=1-
故A队至多获胜4局的概率为.                  4分
(Ⅱ)由题意可知,ξ的可能取值为3,4,5.
P(ξ=3)=()3+()3
P(ξ=4)=()2××()2××
P(ξ=5)=()2()2
∴ξ的分布列为:

ξ
3
4
5
P



∴E(ξ)=3×+4×+5×.                12分
考点:排列组合,分布列,期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)写出数量积X的所有可能取值;
(Ⅱ)分别求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业招聘工作人员,设置三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加组测试,丙、丁两人各自独立参加组测试.已知甲、乙两人各自通过测试的概率均为,丙、丁两人各自通过测试的概率均为.戊参加组测试,组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功.
(Ⅰ)求戊竞聘成功的概率;
(Ⅱ)求参加组测试通过的人数多于参加组测试通过的人数的概率;
(Ⅲ)记组测试通过的总人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分最低为0分,至少得15分才能入选.
(Ⅰ)求乙得分的分布列和数学期望;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排列组成.

第一排
明文字符
A
B
C
D
密码字符
11
12
13
14
第二排
明文字符
E
F
G
H
密码字符
21
22
23
24
第三排
明文字符
M
N
P
Q
密码字符
1
2
3
4
设随机变量ξ表示密码中不同数字的个数.
(1)求
(2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):

科研单位
相关人数
抽取人数
A
16

B
12
3
C
8

(1)确定的值;
(2)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学参加省学业水平测试,物理、化学、生物获得等级和获得等级不是的机会相等,物理、化学、生物获得等级的事件分别记为,物理、化学、生物获得等级不是的事件分别记为.
(Ⅰ)试列举该同学这次水平测试中物理、化学、生物成绩是否为的所有可能结果(如三科成绩均为记为);
(Ⅱ)求该同学参加这次水平测试获得两个的概率;
(Ⅲ)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

箱中有3个黑球,6个白球,每个球被取到的概率相同,箱中没有球.我们把从箱中取1个球放入箱中,然后在箱中补上1个与取走的球完全相同的球,称为一次操作,这样进行三次操作.
(1)分别求箱中恰有1个、2个、3个白球的概率;
(2)从箱中一次取出2个球,记白球的个数为,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案