精英家教网 > 高中数学 > 题目详情

设数列的前项和为,已知(n∈N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当x>0时,
(Ⅲ)令,数列的前项和为.利用(2)的结论证明:当n∈N*且n≥2时,.

(Ⅰ);(Ⅱ)参考解析;(Ⅲ)参考解析

解析试题分析:(Ⅰ)由数列的求和与通项的等式,递推一个等式两式相减可得到一个的一个一节递推式).将等式的两边同除以,即可得到是一个等差数列,再通过求出的通项,即可得到的通项式.最后检验一下n=1时即可.
(Ⅱ)不等式的证明通过转化为两函数的值在大于零恒成立即可.通过求导可得导函数恒大于零.所以原函数在上递增.函数的最小值是大于零.
(Ⅲ)由(Ⅰ)得到的数列可得的通项.由于通项中存在的形式.所以奇偶项的符号不一样.通过整理转化为.结合(Ⅱ)得到的结论令.可得.这样就把分数和的形式改为对数的和的形式即可.
试题解析:(1)由,得)         2分
两式相减,得,即
于是,所以数列是公差为1的等差数列    ..       .3分
,所以.
所以,故.               .5分
(2)令,则,7分
时单调递增,,即当时, .9分
(3)因为,则当n≥2时,

.                    11分
下面证
,由(2)可得,所以
, ,
以上个式相加,即有
              14分
考点:1.数列的通项.构造求通项的思想.3.函数的求导及单调性.4.数列、函数不等式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,g(x)满足,求g(x)的最大值及相应x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)时,求处的切线方程;
(Ⅱ)若对任意的恒成立,求实数的取值范围;
(Ⅲ)当时,设函数,若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在与轴交点处的切线方程是.
(I)求函数的解析式;
(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (为实常数) .
(1)当时,求函数上的最大值及相应的值;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案