精英家教网 > 高中数学 > 题目详情

已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

(1);(2).

解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值、不等式等基础知识,考查函数思想,考查综合分析和解决问题的能力.第一问,因为函数上有极值,所以极值点的横坐标需落在内,对求导,令判断出函数的单调区间,决定出极值点所在位置,得到极值点的横坐标,让落在区间内,列出不等式;第二问,将已知条件先转化为,下面主要任务是求函数的最小值,设出新函数,对它求导,判断出函数的单调性,确定当有最小值,即,所以.
试题解析:(Ⅰ)因为,则
时,,当时,.
所以上单调递增,在上单调递减,
所以函数处取得极大值.
因为函数在区间(其中)上存在极值,
所以 解得
(Ⅱ)不等式即为 记
所以
,则

上单调递增,
,从而
上也单调递增,
所以,所以
考点:1.利用导数判断函数的单调性;2.利用导数求函数的极值;3.利用导数求函数的最值;4.恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,设
(Ⅰ)求函数的单调区间
(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值
(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,已知(n∈N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当x>0时,
(Ⅲ)令,数列的前项和为.利用(2)的结论证明:当n∈N*且n≥2时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数),其中
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点为坐标平面内的动点,满足.
(1)求动点的轨迹方程;
(2)若点是动点的轨迹上的一点,轴上的一动点,试讨论直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中是实数).
(Ⅰ)求的单调区间;
(Ⅱ)若,且有两个极值点,求的取值范围.
(其中是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若存在使得≥0成立,求的范围
(2)求证:当>1时,在(1)的条件下,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)设,证明:在区间内存在唯一的零点;
(Ⅱ)设,若对任意,有,求的取值范围

查看答案和解析>>

同步练习册答案